Abstract:
The present invention provides an optical fiber, an optical fiber cable and a radiation detecting system at a low cost. Further, the radiation detecting system is provided which can adequately monitor the radiation leak without delay. The optical fiber cable comprises: an optical fiber including; a core 12 having lightwave guide property and extending along one direction; a clad layer 14 covering over a peripheral surface of the core 12; and a scintillator material dispersed in the clad layer 14 and emitting light when radiation is applied, a radiation-shielding layer 24 covering substantially over a periphery of the optical fiber10, and a gap 26 located in at least one part of the radiation-shielding layer 24. The radiation detecting system comprises an optical fiber cable 20 adapted to emit light at a region where radiation is applied and transmitting the emitted light, photoelectric conversion means 32 connected to at least one end of the optical fiber cable 20, and processing means 38 detecting when radiation is applied in accordance with an output signal of the photoelectric conversion means 32.
Abstract:
The present invention provides an optical fiber, an optical fiber cable and a radiation detecting system at a low cost. Further, the radiation detecting system is provided which can adequately monitor the radiation leak without delay. The optical fiber cable comprises: an optical fiber including; a core 12 having lightwave guide property and extending along one direction; a clad layer 14 covering over a peripheral surface of the core 12; and a scintillator material dispersed in the clad layer 14 and emitting light when radiation is applied, a radiation-shielding layer 24 covering substantially over a periphery of the optical fiber 10, and a gap 26 located in at least one part of the radiation-shielding layer 24. The radiation detecting system comprises an optical fiber cable 20 adapted to emit light at a region where radiation is applied and transmitting the emitted light, photoelectric conversion means 32 connected to at least one end of the optical fiber cable 20, and processing means 38 detecting when radiation is applied in accordance with an output signal of the photoelectric conversion means 32.
Abstract:
A device (1) for collecting ionizing radiation comprises a scintillating optical fiber (4) received in an opaque sheath, having a first end (7) for receiving ionizing radiation and a second end (14), the fiber is arranged to convert the ionizing radiation received via its first end into light signals and to deliver the signals via its second end. The device further comprises filter elements (9) placed at the first end (10) of the sheath (3) to prevent external photons (&ngr;) and gamma type (&ggr;) ionizing radiation from gaining access to the first end (7) of the scintillating fiber (4), and at the second end (14) of the scintillating fiber (4), first connection elements (16) suitable for connection to light guide elements (2) for enabling the second end (14) of the fiber to be coupled to the end (17) of a light guide (18) of the light guide elements.
Abstract:
A device for measuring the exposure of a solid-state image detector. The image detector includes a first face exposed to ionising radiation representative of the image. The device also lets unabsorbed ionising radiation exit through a second face opposite the first face. The measuring device is configured to be placed close to the second face and to be exposed to the unabsorbed ionising radiation. The device includes at least one optical fiber which emits visible or near visible radiation, obtained by conversion in the optical fiber, towards at least one detection device, the visible or near-visible radiation being representative of the unabsorbed ionising radiation. The detection device produces a signal representative of the exposure of the image detector. Such a device may find particular application to radiology image detectors.
Abstract:
Apparatus for capturing two-dimensional images created by radioactive emanations, such as gamma rays, from a radioactive source, comprises a collimator, a two-dimensional array of scintillating fibers, and position encoding apparatus. The scintillating fibers are located at preselected x and y positions in an x-y plane. The position encoding apparatus comprises banks of photon detectors and a network of optical fibers which are connected to the photon detectors in a manner which encodes the x-y coordinates of the scintillating fibers, and a signal processor for generating position signals indicative of the encoded position of an active scintillating fiber.
Abstract:
Apparatus and method for discriminating against neutrons coming from directions other than a preferred direction and discriminating against gamma rays. Two photomultiplier (PM) tubes 9,10 are parallel to each other and are attached to one end of a light pipe 12. A neutron scintillator 13 is attached to the other end of the light pipe. The scintillator 13 is comprised of optical fibers arranged contiguously along a first direction, which is perpendicular to a length dimension of the optical fibers, and which optical fibers alternate between optical fibers which emit photons only in the lower portion of the electromagnetic spectrum and optical fibers which emit photons only in the higher portion of the electromagnetic spectrum. Typically, the optical fibers are about 100-250 microns. Filters 7,8 are between the PM tubes and the light pipe. One filter 7 transmits only photons in the lower end of the electromagnetic spectrum and the other filter 8 transmits only photons in the higher portion of the electromagnetic spectrum. Neutrons proceeding from a source which is parallel to the first direction will tend to cause only one optical fiber to emit photons. If neutrons enter the scintillator perpendicular to such first direction, photons will most likely be emitted by more than one optical fiber. A signal processing unit 11 will register a detected neutron if a signal is received from only one PM tube and will register a background event if signals are received from both PM tubes. If a gamma ray enters the detector and is detected, the scattered Compton electron most likely will cross two or more optical fibers, causing signals in both PM tubes. A signal processing unit 11 will register the event as a background event.
Abstract:
A distribution type detector comprises scintillation fibers identical in length to each other, an optical delay fiber having a refractive index substantially identical to those of cores and claddings of the scintillation fibers, photosensitive elements, preamplifiers, constant fraction discriminators, a time-to-pulse height converter, an analog-to-digital converter, and a multichannel pulse-height analyzer. A position where a radiation falls on its corresponding scintillation fiber, is detected based on a difference between time intervals necessary for propagation of optical pulses produced in the corresponding scintillation fiber by the radiation. Thus, even if the length of each scintillation fiber is increased, position resolution can be kept high and a measuring circuit system can be simplified.
Abstract:
Apparatus for generating a high contrast image of a living subject includes an X-ray source capable of generating an X-ray beam having an energy between about 4 MeV and about 40 MeV, means for directing the X-ray beam generated by the X-ray source to a preselected area of the body of a living subject, and at least one scintillating detector capable of detecting photons which are generated as a result of the interaction of the X-ray beam with the body of the living subject.
Abstract:
An apparatus and method are disclosed for detecting and locating the origin of a gamma ray in a medical diagnostic imaging system. At least one primary fiber, which is a scintillating optical fiber, is positioned to receive radiation from a gamma ray source. At least one secondary fiber intersects the primary fiber at a non-zero angle. Both fibers have a core surrounded by a cladding, with the claddings of the two fibers in optical contact at an intersection point. Both the primary and secondary fibers are provided with means for detecting light propagated in the fibers. The interaction of radiation such as a gamma ray with the primary fiber will result in the propagation of light in both the primary and secondary fibers, thereby permitting the determination of the site of impact of the gamma ray in the detector, and possibly also enabling the determination of the path of incidence of the gamma ray.
Abstract:
An apparatus and method are disclosed for detecting and locating the origin of a gamma ray in a medical diagnostic imaging system. At least one primary fiber, which is a scintillating optical fiber, is positioned to receive radiation from a gamma ray source. At least one secondary fiber intersects the primary fiber at a non-zero angle and is in optical contact with the primary fiber. Both the primary and secondary fibers are provided with means for detecting light propagated in the fibers. The interaction of a gamma ray with the primary fiber will result in the propagation of light in both the primary and secondary fibers, thereby permitting the determination of the site of impact of the gamma ray in the detector, and possibly also enabling the determination of the path of incidence of the gamma ray.