Abstract:
An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method for assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises a wing structure comprising elongated equal first and second wings; a support structure comprising first and second sections coupled to a middle position of the wing structure and extending in opposite directions perpendicular to the wing structure; and four propellers, each mounted to a respective one of the first and second wings, and first and second sections, for powering the UAV during both vertical and horizontal flight modes.
Abstract:
Embodiments relate to a container that can be installed at a remote location, detect a disaster event, and automatically deploy a UAV. In response to detection of the disaster event, such a container may be configured to: (i) determine whether or not one or more weather conditions affecting operation of an unmanned aerial vehicle (UAV) are conducive to deployment of the UAV to fly to the first geographic area, (ii) if the one or more conditions are conducive to deployment of the UAV, then deploy the UAV to fly to the first geographic area, and (iii) if the one or more conditions are not conducive to deployment of the UAV, then monitor the second data until it is determined that the one or more conditions are conducive to deployment of the UAV, and then deploy the UAV to fly to the first geographic area.
Abstract:
A vertical liftoff aircrafts system includes a plurality of unmanned wing structures configured for collective vertical liftoff; a plurality of tethers respectively connected to the plurality of wing structures; and a fuselage including a connector thereon for mechanically connecting the plurality of tethers. The fuselage includes a power pack for powering the plurality of wing structures via the plurality of tethers, whereby the plurality of wing structures is operatively interconnected to the fuselage with the plurality of tethers for lifting the fuselage. A method and a kit thereof also are disclosed.
Abstract:
A vertical take-off and landing (VTOL) aircraft is provided and includes a fuselage, wings extending outwardly from the fuselage to define a wing plane and a prop-rotor operably disposed to generate thrust, a flight computer and controllable surfaces disposed on at least one of the fuselage, the wings and the prop-rotor. The controllable surfaces are controllable by the flight computer to position the wing plane in accordance with a predominant local wind direction.
Abstract:
Current aircraft technology comprises of fixed wing, multi rotor and vectored engine design. The synthesis of fixed wing technology and vectoring engine technology has been implemented but limited to traditional fixed wing design aircraft. The aircraft presented has been designed with an innovation in airframe expectation, improved vectoring engine design system, and landing gear system.
Abstract:
A method of unmanned aerial vehicle (UAV) operation, including: receiving from a customer a first data request, the first data request having: a first geographic coverage area; and a refresh rate for the first geographic coverage area; planning a first plurality of flight missions to accomplish the first data request; uploading flight missions data representing the first plurality of flight missions into a UAV pod; and deploying the UAV pod
Abstract:
Embodiments of the present invention provide an alternative distributed airborne transportation system. In some embodiments, a method for distributed airborne transportation includes: providing an airborne vehicle with a wing and a wing span, having capacity to carry one or more of passengers or cargo; landing of the airborne vehicle near one or more of passengers or cargo and loading at least one of passengers or cargo; taking-off and determining a flight direction for the airborne vehicle; locating at least one other airborne vehicle, which has substantially the same flight direction; and joining at least one other airborne vehicle in flight formation and forming a fleet, in which airborne vehicles fly with the same speed and direction and in which adjacent airborne vehicles are separated by distance of less than 100 wing spans.
Abstract:
Embodiments of the present invention provide an aircraft for vertical take-off and landing. In various embodiments, an aircraft assembly includes at least one first wing portion providing a lift force during a horizontal flight, at least one wing opening disposed on a vertical axis of the at least one first wing portion and at least one thruster positioned inside the at least one wing opening to provide vertical thrust during a vertical flight. The aircraft assembly can further include air vents positioned inside at least one of the wing openings. The air vents can further include louvres positioned over or under the air vents to open and close the wing openings. The thruster can further be used to provide flight control for the aircraft.
Abstract:
An improved vehicle with superior performance and reliability. The vehicle, such as an unmanned aerial vehicle, is capable of vertical takeoff and landing, uses three swashless, variable-pitch vertical lift main rotors with a yaw tail rotor system. Two rear main rotors are optionally tiltrotors, which pivot to increase forward speed without the increased coefficient of drag inherent in tilting the entire vehicle. The three main rotors are positioned in an equilateral triangular configuration, improving balance, increasing load-bearing strength, and making it more compact in size. Movements are controlled through changes in pitch of the rotors, allowing the motors to maintain constant governed rotations per minute, maximizing drivetrain efficiency. Vehicle configurations disclosed herein allow for smaller vehicle size with greater performance than prior art vehicles.
Abstract:
Modular nacelles to provide vertical takeoff and landing (VTOL) capabilities to fixed-wing aerial vehicles, and associated systems and methods are disclosed. A representative system includes a nacelle, a power source carried by the nacelle, and multiple VTOL rotors carried by the nacelle and coupled to the power source. The system can further include an attachment system carried by the nacelle and configured to releasably attach the nacelle to an aircraft wing.