Abstract:
A system for cooling and recuperative heating of a slurry in a metallurgical process which includes heat exchangers, pumps and autoclaves is described herein. The heat exchangers use a non-scaling common liquid heat transfer medium. Preferably, the heat exchangers are tube-in-tube heat exchangers with 3 to 7 slurry tubes in each heat exchanger. An advantage of this system is that it does not use flash tanks. To minimize abrasive wear on impinged surfaces, the velocity of the slurry is not more than 5 meters per second. The slurry comprises a solids concentration of 25% to 50%. Preferably, the pumps in the system are float-type pumps in which the driven liquid from the discharge pumps is also used as the drive liquid for the feed pumps.
Abstract:
A method of protecting a cylinder of a compressor comprising a piston, a linear permanent magnet (PM) having a coil and a magnet, and a sensor-less control of the PM for moving the piston in and out of the cylinder. The method including the steps of receiving a reference position of the piston from a temperature control loop; deriving a compensation voltage and a load spring effect information from a current through the coil; providing a model input voltage to a model of a mechanical structure of the compressor for predicting position of the piston, the model input voltage comprising a first voltage derived from the reference position; a compressor input voltage comprising the first voltage and the compensation voltage; and using a position control loop to recognize when the maximum compression ratio is desired and controlling the piston to achieve maximum compression ratio without causing damage to the discharge valve.
Abstract:
A portable pumping system provides insulin or other drugs to a user. A shape memory element is used to actuate the pump and an intelligent system controls the actuator in order to minimize stresses within the system and provide accurate and reliable dosage delivery. The control system utilizes various types of feedback to monitor and optimize the position of the pumping mechanisms. Physical design aspects also minimize stress and the combination of the physical design aspects and the intelligent operation of the system results in a lightweight and cost effective pump that may be used in a disposable fashion if desired.
Abstract:
A portable pumping system provides insulin or other drugs to a user. A shape memory element is used to actuate the pump and an intelligent system controls the actuator in order to minimize stresses within the system and provide accurate and reliable dosage delivery. The control system utilizes various types of feedback to monitor and optimize the position of the pumping mechanisms. Physical design aspects also minimize stress and the combination of the physical design aspects and the intelligent operation of the system results in a lightweight and cost effective pump that may be used in a disposable fashion if desired.
Abstract:
A method of controlling a fluid pump. The pump has a plurality of oscillating pistons that travel along a central axis of a piston sleeve. A plurality of pistons is of similar mass within a piston sleeve are provided, and adjacent pistons are positioned to be 180 degrees apart in phase oscillations. An electric coil is provided for each piston, and the position of adjacent pistons is determined. The current to one of the electric coils for a piston is adjusted to maintain the 180 degree difference in phase between oscillations of adjacent pistons.
Abstract:
A prime mover includes a shaft assembly that is supported for reciprocal movement between first and second ends of a stroke, and that includes first and second portions having a first material, and a third portion in between the first and second portions, having a second material, different from the first material. A single inductive proximity sensor makes a first indication when proximate the first material, and makes a second indication, when proximate the second material. A portion of the sensor is proximate the first portion when the shaft is at the first end of the stroke, the same portion of the same sensor is proximate the second portion when the shaft is at the second end of the stroke, and the same portion of the same sensor is proximate the third portion the entire time the shaft is in between the first and second ends of the stroke.
Abstract:
A linear compressor having an electromagnet; an oscillating body movably guided in an oscillating fashion in the alternating field of the electromagnet; a cylinder; a piston connected to the oscillating body and movable back and forth inside the cylinder; a power supply circuit to supply the electromagnet with an alternating current; a proximity sensor to detect whether a distance between the piston and the end face of the cylinder falls below a predetermined threshold value; and a control circuit to detect a time period in which the distance between the piston and the end face of the cylinder falls below the threshold value and to regulate an amplitude and/or a phase of the alternating current if the time period deviates from a positive setpoint value.
Abstract:
Disclosed is a self-reciprocating energy recovery device utilized in driving of a seawater pump by self-reciprocating a piston of a power recovery chamber and recovering energy not using an electronic drive unit but using the hydraulic power of concentrated water. The self-reciprocating energy recovery device including a pair of power recovery chambers having pistons therein respectively, a high-pressure concentrated supply pipe, a low-pressure concentrated discharge pipe, and a high-pressure seawater discharge pipe to enable the power recovery chambers to recover hydraulic power supplied through the high-pressure concentrated water supply pipe and utilize the hydraulic power in driving of a seawater pump.
Abstract:
A portable pumping system provides insulin or other drugs to a user. A shape memory element is used to actuate the pump and an intelligent system controls the actuator in order to minimize stresses within the system and provide accurate and reliable dosage delivery. The control system utilizes various types of feedback to monitor and optimize the position of the pumping mechanisms. Physical design aspects also minimize stress and the combination of the physical design aspects and the intelligent operation of the system results in a lightweight and cost effective pump that may be used in a disposable fashion if desired.
Abstract:
A driving controlling apparatus for a linear compressor, comprises a controlling unit for detecting a TDC by a phase difference inflection point between a stoke and a current with increasing the stroke by controlling the current applied to a linear motor, and for varying the current applied to the linear motor based on the detected TDC.