Abstract:
An optical performance monitor for measuring the performance of optical networks has an echelle grating for demultiplexing an input beam into a plurality of wavelengths that are focused onto an array of divided output waveguides. Each divided output waveguide is positioned to receive a corresponding demultiplexed wavelength from the echelle grating or other waveguide multiplexer device. The divided output waveguides laterally separate the corresponding demultiplexed wavelength into a first and second portions. A detector array is positioned to receive the respective portions of the demultiplexed wavelengths and by comparing their relative intensity it is possible to detect any drift in the nominal wavelengths of the channels.
Abstract:
A color measuring sensor assembly includes an optical filter such as a linear variable filter, an optical detector array positioned directly opposite from the optical filter a predetermined distance, and a coherent fiber faceplate having a plurality of optical fibers interposed between the optical filter and the detector array. A light beam propagating through the fiber faceplate from the optical filter to the detector array projects an upright, noninverted image of the optical filter onto a photosensitive surface of the detector array. Each optical fiber in the fiber faceplate is of limited aperture to control the tendency of light to diverge and to increase the resolution capabilities of the sensor assembly. The color measuring sensor assembly can be incorporated with other components into a spectrometer device such as a portable calorimeter having a compact and rugged construction.
Abstract:
A spectrophotometer is provided which includes: (i) a Linear Variable Filter, (ii) a linear sensor or a two-dimensional image sensor, and (iii) at least one fiber optic plate that is disposed between the Linear Variable Filter and the linear sensor or two-dimensional image sensor, and that transfers light separated into spectral components and outgoing from the Linear Variable Filter to the linear sensor or two-dimensional image sensor. With this structure, a compact spectrophotometer can be obtained which has an excellent wavelength resolution, accuracy, and light transfer ratio, and which can conduct wavelength spectral measurements at high speed and with high accuracy.
Abstract:
An apparatus monitors spectral information of an optical transmission system. The apparatus comprises a monolithic spectrometer and at least one transmission signal detector for producing output signals of separated transmission signal components and optical noise.
Abstract:
The invention relates to a process and a device for detecting or recognizing an object by means of color recognition or brightness evaluation, whereby radiation emitted by a radiation source on the object and radiation reflected from the object is recorded by a photosensitive element such as a color-recognizing sensor. In order to be able to detect objects with a higher measuring exactitude, whereby changes in distance between object and light-sensitive element should not basically lead to a measurement falsification, it is suggested that reflected radiation be guided to the photosensitive element by means of a light-guiding element tapering in the direction of the photosensitive element.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe With respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
A combined spectrometer/polarimeter device capable of being placed in-line in a WDM optical transmission system is provided. The combined device contains an optical waveguide, wavelength manipulating optics that include one or more wavelength dispersive elements formed in the waveguide, and polarization manipulating optics. The wavelength dispersive elements tap at least a portion of the propagating light from the waveguide, such that the tapped light is directed to or through at least a portion of the polarization manipulating optics. The presence of the wavelength dispersive element(s) allow monitoring of one or more channels present in the propagating light. Thus, the device is able to act as a spectrometer to determine the presence/intensity of channels in the WDM system. In addition, by inclusion of the polarization-manipulating optics, it is further possible to use the same in-line device to monitor polarization characteristics of each such channel (e.g., calculation of a Stokes parameter spectrum or measurement of PMD).
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Low cost and small form factor spectrometers, and methods for manufacturing the same, also are disclosed.
Abstract:
Optical characteristic measuring systems and methods such as for determining the color or other optical characteristics of teeth are disclosed. Perimeter receiver fiber optics preferably are spaced apart from a source fiber optic and receive light from the surface of the object/tooth being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object/tooth being measured. Under processor control, the optical characteristics measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence, gloss and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention. A method of producing dental prostheses based on measured data also is disclosed. Measured data also may be stored and/or organized as part of a patient data base. Such methods and implements may be desirably utilized for purposes of detecting and preventing counterfeiting or the like. Preferably, a two stage spectral separation is utilized, preferably utilizing a diffraction grating and interference filters.