Abstract:
A system and method of passivating an exposed conductive material includes placing a substrate in a process chamber and injecting a hydrogen species into the process chamber. A hydrogen species plasma is formed in the process chamber. A surface layer species is reduced from a top surface of the substrate is reduced. The reduced surface layer species are purged from the process chamber.
Abstract:
A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion includes a localized non-uniformity. An additional layer is formed an the overburden portion. The additional layer and the overburden portion are planarized. The planarizing process substantially entirely removes the additional layer.
Abstract:
An antenna arrangement for generating an electric field inside a process chamber through a window. Generally, the antenna arrangement comprises an outer loop, comprising a first outer loop turn disposed around an antenna axis, an inner loop, comprising a first inner loop turn disposed around the antenna axis, wherein the inner loop is closer to the antenna axis than the outer loop is to the antenna axis in each azimuthal direction, and a radial connector radially electrically connecting the outer loop to the inner loop, wherein the radial connector is placed a large distance from the window.
Abstract:
A plasma processing apparatus for processing a substrate with a plasma is disclosed. The apparatus includes a first RF power source having a first RF frequency, and a process chamber. Further, the apparatus includes a substantially circular antenna operatively coupled to the first RF power source and disposed above a plane defined by the substrate when the substrate is disposed within the process chamber for processing. The substantially circular antenna being configured to induce an electric field inside the process chamber with a first RF energy generated by the first RF power source. The substantially circular antenna including at least a first pair of concentric loops in a first plane and a second pair of concentric loops in a second plane. The first pair of concentric loops and the second pair of concentric loops being substantially identical and symmetrically aligned with one another. The substantially circular antenna forming an azimuthally symmetric plasma inside the process chamber. The apparatus also includes a coupling window disposed between the antenna and the process chamber. The coupling window being configured to allow the passage of the first RF energy from the antenna to the interior of the process chamber. The coupling window having a first layer and a second layer. The second layer being configured to substantially suppress the capacitive coupling formed between the substantially circular antenna and the plasma. The substantially circular antenna and the coupling window working together to produce a substantially uniform process rate across the surface of the substrate.
Abstract:
A plasma confinement arrangement for controlling the volume of a plasma while processing a substrate inside a process chamber using a plasma enhanced process is disclosed. The arrangement includes a first magnetic bucket having a plurality of first magnetic elements. The first magnetic elements being configured for producing a first magnetic field inside the process chamber. The arrangement further includes a second magnetic bucket having a plurality of second magnetic elements. The second magnetic elements being configured for producing a second magnetic field inside the process chamber. The second magnetic field being configured to combine with the first magnetic field to produce a resultant magnetic field between the first magnetic bucket and the second magnetic bucket. The resultant magnetic field being configured to permit by-product gas from the processing to pass through while substantially confining the plasma within a volume defined at least by the process chamber and the resultant magnetic field.
Abstract:
A plasma processing apparatus for processing a substrate with a plasma is disclosed. The apparatus includes a first RF power source having a first RF frequency, and a process chamber. Further, the apparatus includes a substantially circular antenna operatively coupled to the first RF power source and disposed above a plane defined by the substrate when the substrate is disposed within the process chamber for processing. The substantially circular antenna being configured to induce an electric field inside the process chamber with a first RF energy generated by the first RF power source. The substantially circular antenna including at least a first pair of concentric loops in a first plane and a second pair of concentric loops in a second plane. The first pair of concentric loops and the second pair of concentric loops being substantially identical and symmetrically aligned with one another. The substantially circular antenna forming an azimuthally symmetric plasma inside the process chamber. The apparatus also includes a coupling window disposed between the antenna and the process chamber. The coupling window being configured to allow the passage of the first RF energy from the antenna to the interior of the process chamber. The coupling window having a first layer and a second layer. The second layer being configured to substantially suppress the capacitive coupling formed between the substantially circular antenna and the plasma. The substantially circular antenna and the coupling window working together to produce a substantially uniform process rate across the surface of the substrate.
Abstract:
Methods, systems, and computer programs are presented for semiconductor manufacturing are provided. One wafer processing apparatus includes: a top electrode; a bottom electrode; a first radio frequency (RF) power source; a second (RF) power source; a third (RF) power source; a fourth (RF) power source; and a switch. The first, second, and third power sources are coupled to the bottom electrode. Further, the switch is operable to be in one of a first position or a second position, where the first position causes the top electrode to be connected to ground, and the second position causes the top electrode to be connected to the fourth (RF) power source.
Abstract:
An electrode is exposed to a plasma generation volume and is defined to transmit radiofrequency power to the plasma generation volume, and includes an upper surface for holding a substrate in exposure to the plasma generation volume. A gas distribution unit is disposed above the plasma generation volume and in a substantially parallel orientation to the electrode. The gas distribution unit includes an arrangement of gas supply ports for directing an input flow of a plasma process gas into the plasma generation volume in a direction substantially perpendicular to the upper surface of the electrode. The gas distribution unit also includes an arrangement of through-holes that each extend through the gas distribution unit to fluidly connect the plasma generation volume to an exhaust region. Each of the through-holes directs an exhaust flow from the plasma generation volume in a direction substantially perpendicular to the upper surface of the electrode.
Abstract:
A method of bevel edge etching a semiconductor substrate having exposed copper surfaces with a fluorine-containing plasma in a bevel etcher in which the semiconductor substrate is supported on a semiconductor substrate support comprises bevel edge etching the semiconductor substrate with the fluorine-containing plasma in the bevel etcher; evacuating the bevel etcher after the bevel edge etching is completed; flowing defluorinating gas into the bevel etcher; energizing the defluorinating gas into a defluorination plasma at a periphery of the semiconductor substrate; and processing the semiconductor substrate with the defluorination plasma under conditions to prevent discoloration of the exposed copper surfaces of the semiconductor substrate upon exposure, the discoloration occurring upon prolonged exposure to air.
Abstract:
A bevel inspection module for capturing images of a substrate is provided. The module includes a rotational motor, which is attached to a substrate chuck and is configured to rotate the substrate chuck thereby allowing the substrate to revolve. The module further includes a camera and an optic enclosure, which is attached to the camera and is configured to rotate, enabling light to be directed toward the substrate. The camera is mounted from a camera mount, which is configured to enable the camera to rotate on a 180 degree plane allowing the camera to capture images of at least one of a top view, a bottom view, and a side view of the substrate. The module yet also includes a backlight arrangement, which is configured to provide illumination to the substrate, thereby enabling the camera to capture the images, which shows contrast between the substrate and a background.