Abstract:
This invention provides chelating moieties that comprise an aryl group. Monomers that include the chelating moieties can be polymerized into chelating polymers. Chelating polymers are useful to chelate metals. Chelating polymers in the form of metal chelates are useful for binding analytes, such as polypeptides that comprise histidine residues. Chelating polymers can be includes in articles such as chips and chromatographic materials.
Abstract:
This invention provides methods for quantifying the amount of analyte in a biological sample, e.g., a clinical sample. The methods comprise creating a calibration series using a complex milieu of proteins comprising a large number of standard proteins and the analyte of interest. The calibration series is used to generate a standard curve for quantification of the analytes in a test biological sample.
Abstract:
This invention provides methods for quantifying the amount of analyte in a biological sample, e.g., a clinical sample. The methods comprise creating a calibration series using a complex milieu of proteins comprising a large number of standard proteins and the analyte of interest. The calibration series is used to generate a standard curve for quantification of the analytes in a test biological sample.
Abstract:
The present invention contemplates various devices that are configured to separate a sample, which contains more than one unique species, into any desired number of sub-samples by passing the sample across a like number of separation media configured for a first separation protocol. Each of the sub-samples may be further separated by an additional separation protocol, thereby creating a plurality of mini-samples, each of which may be further separated and/or analyzed. The invention also contemplates using a simple method of using conduits to form a fluid path that passes through a plurality of separation media, each of which media is configured to isolate a particular sub-sample. After various sub-samples of the sample are isolated by the various separation media, the conduits may be removed, thereby enabling each of the isolated sub-samples to be further separated and/or analyzed independent of any other sub-sample.
Abstract:
Ion exchange and hydrophobic interaction chromatographic materials are constructed by tethering a terminal binding functionality to a solid support via a hydrophobic linker. The backbone of the linker typically comprises sulfur-containing moieties. Suitable terminal binding functionalities are tertiary amines, quaternary ammonium salts, or hydrophobic groups. These chromatographic materials possess both hydrophobic and ionic character under the conditions prescribed for their use. The separation of proteins from crude mixtures at physiological ionic strength can be accomplished with a chromatographic material of this type by applying pH or ionic strength gradients, thereby effecting protein adsorption and desorption.
Abstract:
Each embodiment includes a central sample reservoir (110) and a plurality of satellite reservoirs (120 A-H). In a first embodiment, a first electrode (140) in electrical contact with the central reservoir is charged and second electrodes (150 A-H) in electrical contact with the satellite reservoirs are sequentially charged, thereby pI filtering molecules in the central reservoir into the satellite reservoirs. In a second embodiment, the central reservoir is configured to rotate so that molecules in a sample in the central reservoir are centrifugally pI-filtered into the satellite reservoirs. In a third embodiment, first and second electrodes proximate opposite first and second satellite reservoirs, respectively, are charged. Some molecules in a sample are pI filtered into the first and second satellite reservoirs. Third and fourth electrodes proximate opposite third and fourth satellite reservoirs, respectively, are then charged. Some molecules in a sample are pI filtered into the third and fourth satellite reservoirs.
Abstract:
Ion exchange and hydrophobic interaction chromatographic materials are constructed by tethering a terminal binding functionality to a solid support via a hydrophobic linker. The backbone of the linker typically comprises sulfur-containing moieties. Suitable terminal binding functionalities are tertiary amines, quaternary ammonium salts, or hydrophobic groups. These chromatographic materials possess both hydrophobic and ionic character under the conditions prescribed for their use. The separation of proteins from crude mixtures at physiological ionic strength can be accomplished with a chromatographic material of this type by applying pH or ionic strength gradients, thereby effecting protein adsorption and desorption.
Abstract:
The present invention relates to the fields of molecular biology, combinatorial chemistry and biochemistry. Particularly, the present invention describes apparatus and methods for the detection and isolation of binding partners and activity modulators for biomolecules. The apparatus described allows for expression, capture and analysis of one or more biomolecules in a single step.
Abstract:
A hydrogel layer is applied to a substrate advantageously when the layer is formed in situ, using a polymeric or copolymeric precursor that includes, respectively, monomer subunits that have a photocrosslinkable functionality and monomer subunits that have a chemically selective functionality for binding a biomolecular analyte, such as a protein. A hydrogel-coated substrate thus obtained is particularly useful as a probe for mass spectroscopic analysis, including SELDI analysis. Hydrogel particles also can be used for SELDI analysis.
Abstract:
This invention provides methods and materials for mapping interaction characteristics between components of a multicomponent biological complex. The methods involve capturing a multicomponent complex on a solid support and washing the support with a series of elution washes forming a gradient of solute concentrations, and determining whether a particular elution wash eluted a particular component.