Abstract:
Disclosed herein are methods for extracting a kerogen-based product from subsurface (oil) shale formations. These methods rely on chemically modifying the shale-bound kerogen using a chemical oxidant so as to render it mobile. The oxidant is provided to a formation fluid in contact with the kerogen in the subsurface shale. An alkaline material is also provided to the formation fluid to mobilize organic acids which are produced during oxidation of the kerogen. A mobile kerogen-based product which includes the organic acids is withdrawn from the subsurface shale formation and further processed to isolate the organic acids contained therein. An exemplary method for isolating the acids includes treating the mobile kerogen- based product such that at least a portion of the organic acids form a separate phase from the mobile kerogen-based product. The organic acids may further be extracted from the mobile kerogen-based product using an organic extraction fluid. The isolated organic acids can be upgraded by a reaction process that make the products suitable as refinery feedstocks, fuel or lubricant blendstocks, reaction intermediates, chemical feedstocks, or chemical intermediate blendstocks.
Abstract:
Disclosed herein are methods for extracting a kerogen-based product from subsurface (oil) shale formations. These methods rely on chemically modifying the shale-bound kerogen using a chemical oxidant so as to render it mobile. The oxidant is provided to a formation fluid in contact with the kerogen in the subsurface shale. An alkaline material is also provided to the formation fluid to mobilize organic acids which are produced during oxidation of the kerogen. A mobile kerogen-based product which includes the organic acids is withdrawn from the subsurface shale formation and further processed to isolate the organic acids contained therein. An exemplary method for isolating the acids includes treating the mobile kerogen- based product such that at least a portion of the organic acids form a separate phase from the mobile kerogen-based product. The organic acids may further be extracted from the mobile kerogen-based product using an organic extraction fluid. The isolated organic acids can be upgraded by a reaction process that make the products suitable as refinery feedstocks, fuel or lubricant blendstocks, reaction intermediates, chemical feedstocks, or chemical intermediate blendstocks.
Abstract:
Provided is a novel method for nucleating the growth of a diamond film. The method comprises providing a substrate having a diamondoid chemically attached to it, which serves as a superior nucleation site, and then facilitating the growth of the diamond film.
Abstract:
Provided is a novel method for nucleating the growth of a diamond film. The method comprises providing a substrate having a diamondoid chemically attached to it, which serves as a superior nucleation site, and then facilitating the growth of the diamond film.
Abstract:
This invention relates to diamondoid derivatives which exhibit therapeutic activity. Specifically, the diamondoid derivatives herein exhibit therapeutic effects in the treatment of neurologic disorders. Also provided are methods of treatment, prevention and inhibition of neurologic disorders in a subject in need.
Abstract:
Novel heterodiamondoid-containing field emission devices (FED's) are disclosed herein. In one embodiment of the present invention, the heteroatom of the heterodiamondoid comprises an electron-donating species (such as nitrogen) as part of the cathode or electron-emitting component of the field emission device.
Abstract:
Novel heterodiamondoids are disclosed. These heterodiamondoids are diamondoids that include heteroatoms in the diamond lattice structure. The heteroatoms may be either electron donating, such that an n-type heterodiamondoid is created, or electron withdrawing, such that a p-type heterodiamondoid is made. Bulk materials may be fabricated from these heterodiamondoids, and the techniques involved include chemical vapor deposition, polymerization, and crystal aggregation. Junctions may be made from the p-type and n-type heterodiamondoid based materials, and microelectronic devices may be made that utilize these junctions. The devices include diodes, bipolar junction transistors, and field effect transistors.
Abstract:
Novel uses of diamondoid-containing materials in the field of microelectronics are disclosed. Embodiments include, but are not limited to, thermally conductive films in integrated circuit packaging, low-k dielectric layers in integrated circuit multilevel interconnects, thermally conductive adhesive films, thermally conductive films in thermoelectric cooling devices, passivation films for integrated circuit devices (ICs), and field emission cathodes. The diamondoids employed in the present invention may be selected from lower diamondoids, as well as the newly provided higher diamondoids, including substituted and unsubstituted diamondoids. The higher diamondoids include tetramantane, pentamantane, hexamantane, heptamantane, octamantane, nonamantane, decamantane, and undecamantane. The diamondoid-containing material may be fabricated as a diamondoid-containing polymer, a diamondoid-containing sintered ceramic, a diamondoid ceramic composite, a CVD diamondoid film, a self-assembled diamondoid film, and a diamondoid-fullerene composite.
Abstract:
Disclosed are processes for the recovery and purification of higher diamondoids from a hydrocarbonaceous feedstock. Specifically disclosed is a multi-step recovery process for obtaining diamondoid compositions enhanced in tetramantane components and other higher diamondoid components. Also disclosed are compositions comprising at least about 10 weight percent of non-ionized tetramantane components and other higher diamondoid components and at least about 0.5 weight percent of non-ionized pentamantane components and other higher diamondoid components based on the total weight of diamondoid components present.