Abstract:
This invention is a process for the alkylation of isoparaffin with olefins using a catalyst system comprising certain transition aluminas promoted with a Lewis acid (preferably BF3), and free Lewis acid. The product alkylate is a complex mixture of branched paraffins suitable for use as a high octane blending component for motor fuels.
Abstract:
2066205 9105751 PCTABS00005 The selective alkylation of naphthalene or 2-ethylnaphthalene to diethylnaphthalene while maximizing the yield of the 2,6-diethylnaphthalene isomer is achieved by carrying out the reaction in the presence of a shape selective catalyst such as the zeolite catalyst ZSM-12.
Abstract:
A method for reducing the amount of carbon monoxide produced in the combustion of carbonaceous fuels. The fuel is coated on at least a portion of its exterior surface with a microporous layer of solid particulate matter which is non-combustible at temperatures in which the carbonaceous fuel combusts. This invention is particularly applicable in the reduction of carbon monoxide in the burning of carbonaceous fuel elements found in currently available "smokeless" cigarettes.
Abstract:
The invention is an improved catalyst structure and its use in highly exothermic processes like catalyst combustion. This improved catalyst structure employed integral heat exchange in an array of longitudinally disposed, adjacent reaction passage-ways or channels, which are either catalyst-coated (14) or catalyst-free (16), wherein the configuration of the catalyst-coated channels (14) differ from the non-catalyst channels (16) such that, when applied in exothermic reaction processes, such as catalyst combustion, the desired reaction is promoted in the catalytic channels (14) and substantially limited in the non-catalytic channels (16). The invention further comprises an improved reaction system and process for combustion of a fuel wherein catalytic combustion using a catalyst structure employing integral heat exchange, preferably the improved structures of the invention, affords a partially-combusted, gaseous product which is passed to a homogeneous combustion zone where complete combustion is promoted by means of a flameholder.
Abstract:
The present invention provides an acid catalyst complex comprising an organosulfonic acid having at least one covalent carbon-fluorine bond or one covalent carbon-phosphorus bond provided by a phosphono radical which has been contacted with a Lewis Acid to produce a catalyst complex containing said Lewis Acid. The present invention also provides a process for the conversion of a reactant into a reaction product in the presence of said catalyst complex. In particular, the catalyst complex is useful for providing a high octane alkylate stream by converting a mixture comprising isoparaffins and olefins into said alkylate in the presence of said catalyst complex.
Abstract:
This invention is directed to a catalyst system for use in the alkylation of isoparaffin with olefins. More specifically, this invention is directed to an improved catalyst system containing specified amounts of water and a component of that system comprising certain transition aluminas promoted with a Lewis acid (preferably BF3). In addition, this invention is a catalytic process for the alkylation of isoparaffin with olefins. The catalyst component is produced by contacting the transition alumina with the Lewis acid at relatively low temperatures. The catalyst system comprises that component and an additional amount of free Lewis acid. The process entails isoparaffin alkylation with olefins using the catalyst component and its allied catalyst system.
Abstract:
This invention is a combination process for removal of sulfur oxides (SOx) from gases containing both the SOx and oxygen (106). The fluid used to remove the SOx contains sulfuric acid and bromine. The SOx is converted to sulfuric acid and the bromine is thereafter converted to hydrobromic acid. The hydrobromic acid is concentrated and catalytically converted to bromine for ultimate recycling to the SOx removal step (132). The SOx is finally recovered as a strong sulfuric acid (104).
Abstract translation:本发明是从含有SO x和氧(106)的气体中除去硫氧化物(SOx)的组合方法。 用于除去SOx的流体含有硫酸和溴。 将SO x转化为硫酸,然后将溴转化为氢溴酸。 将氢溴酸浓缩并催化转化成溴,以最终循环至SO x去除步骤(132)。 SO x最终作为强硫酸回收(104)。
Abstract:
This is a catalyst and a process for partially hydrogenating polycyclic and monocyclic aromatic hydrocarbons such as benzene, naphthalenes, biphenyls, and alkylbenzenes to produce the corresponding cycloolefins. The catalyst is a hydrogenation catalyst comprising ruthenium on a composite support. It is a process in which the product cycloolefin is produced in high yield and with high selectivity.