Abstract:
A compression device includes a first compressor and a second compressor mounted in parallel, each compressor including a leakproof enclosure including a low pressure portion containing a motor and an oil sump, an oil level equalization conduit putting into communication the oil sumps of the first and second compressors, and control means adapted for controlling the starting and the stopping of the first and second compressors. The first compressor includes first detection means coupled with the control means and adapted for detecting an oil level in the oil sump of the first compressor. The control means are adapted for controlling the stopping of the second compressor when the oil level detected by the first detection means falls below a first predetermined value.
Abstract:
The counterweight (26) is manufactured by an additive manufacturing process and includes a mounting portion (28) having a first density and a mass portion (29) having a second density, the mass portion (29) being formed radially outward of the mounting portion (28), wherein the first density of the mounting portion (28) and the second density of the mass portion (29) are different from each other, and wherein the mass portion (29) includes at least a first segment (29.1) having a first segment density and a second segment (29.2) having a second segment density which is different from the first segment density.
Abstract:
The multi-compressor system (7) has a plurality of parallelly coupled compressors (8); inlet connection lines (15) each connected to a refrigerant suction fitting of a respective compressor (8); outlet connection lines (17) each connected to a refrigerant discharge fitting of a respective compressor (8); a common oil balancing line (18) and balancing connection lines (19) each connecting the common oil balancing line (18) to an oil balancing connection (21) of a respective compressor (8); and spring-loaded normally-open valves (25) each being arranged within a respective balancing connection line (19) or within an oil balancing connection (21) of a respective compressor (8) and each being configured to close when a pressure difference between a pressure prevailing in the low pressure volume of the respective compressor (8) and a pressure prevailing in the common oil balancing line (18) reaches a predetermined value.
Abstract:
A scroll compressor (1) including an enclosure (2); a compression section (6) arranged within the enclosure (2), the compression section (6) has a fixed scroll element (7) having a first baseplate (11) and a first wrap portion (12) extending from the first baseplate (11), and an orbiting scroll element (8) having a second baseplate (13) and a second wrap portion (14) extending from the second baseplate (13), the fixed and orbiting scroll elements (7, 8) being intermeshed to form compression chambers (15); and a driving section (16) coupled with the orbiting scroll element (8) for moving the orbiting scroll element (8) in an orbiting motion during operation of the scroll compressor (1). At least one of the fixed and orbiting scroll elements (7, 8) is made of solid solution strengthened ferritic ductile iron.
Abstract:
The scroll compressor (1) includes a fixed scroll (7); an orbiting scroll (8); a support arrangement (5) including a thrust bearing surface (9) on which is slidably mounted the orbiting scroll (8); a rotation preventing device configured to prevent rotation of the orbiting scroll (8) with respect to the fixed scroll (7), the rotation preventing device including a plurality of orbital discs (28) respectively rotatably mounted in circular receiving cavities (29) provided on the support arrangement (5), each orbital disc (28) being provided with an outer circumferential bearing surface (31) configured to cooperate with an inner circumferential bearing surface (32) provided on the respective circular receiving cavity (29); and a lubrication system configured to lubricate the inner and outer circumferential bearing surfaces (32, 31) with oil supplied from an oil sump (36), the lubrication system including a plurality of oil reservoirs (43) each arranged in a bottom surface of a respective circular receiving cavity, and a plurality of oil stirring arrangements each configured to stir oil contained in a respective oil reservoir (43).
Abstract:
The scroll compressor comprises a fixed scroll having a fixed end plate and a fixed spiral wrap extending from the fixed end plate; an orbiting scroll (9) having an orbiting end plate and an orbiting spiral wrap extending from the orbiting end plate, the fixed spiral wrap and the orbiting spiral wrap meshing with each other to form compression chambers; a vertical drive shaft (19) having a crankpin (21) at an upper end portion of the vertical drive shaft (19), the crankpin (21) including an outer circumferential surface (23) cooperating with an orbiting scroll bearing (24). The crankpin (21) includes a recess (25) formed in an axial end face (26) of the crankpin (21), the recess (25) and an upper portion (27) of the outer circumferential surface (23) defining therebetween a circumferential wall (28) extending along at least a part of the circumference of the crankpin (21), the circumferential wall (28) being deformable in a radial direction during operation of the scroll compressor.
Abstract:
The scroll compressor includes a compression unit; a drive shaft which is vertically orientated; a lower bearing arrangement (28) configured to rotatably support the drive shaft; and an oil pump (29) arranged at a lower end of the drive shaft and configured to deliver oil to the compression unit and to the lower bearing arrangement (28). The lower bearing arrangement (28) comprises a radial bearing housing (34) including an inner radial bearing surface (37) surrounding the lower end portion of the drive shaft; upper and lower axial thrust bearings (43, 44) configured to limit an axial movement of the drive shaft; and a pressurized oil chamber (51) fluidly connected to the oil pump (29), the pressurized oil chamber (51) being at least partially delimited by the outer surface of the lower end portion of the drive shaft, the inner radial bearing surface (37) and the upper and lower axial thrust bearings (43, 44).
Abstract:
The scroll compressor (2) comprises a hermetic enclosure (3) comprising an outer shell (4); a compression unit (11) arranged within the hermetic enclosure (3); an electric motor (21) configured to drive the compression unit (11), the electric motor (21) including a rotor (22) and a stator (23); and an inner shell (26) in which the electric motor (21) is arranged. A baffle (34) is arranged inside the inner shell (26) at a stator end winding (25) of the electric motor (21), the baffle (34) comprising deflecting means configured to deflect at least a part of a main refrigerant flow, flowing inside the inner shell (26), towards said stator end winding (25).
Abstract:
The scroll compressor comprises a fixed scroll element comprising a fixed end plate (13) and a fixed spiral wrap (14); an orbiting scroll element comprising an orbiting end plate and an orbiting spiral wrap (16), the fixed and orbiting spiral wraps (14, 16) being intermeshed with each other to define pairs of compression pockets, a radial inner pair of compression pockets comprising a direct pocket (17.1) and an indirect pocket (17.2); a central main discharge port (18) formed in the fixed end plate (13) and configured to communicate the direct pocket (17.1) with a discharge pressure volume; and an auxiliary discharge port (26) formed in the fixed end plate (13) at a position close to an outer wall side (14.2) of the fixed spiral wrap (14) and adjacent the inner end (14.4) of the fixed spiral wrap (14). The auxiliary discharge port (26), during orbiting movement of the orbiting scroll element (12), is at least partially uncovered by the orbiting spiral wrap (16) to communicate the indirect pocket (17.2) with the discharge pressure volume.
Abstract:
This scroll compressor (2) includes a first and second fixed scrolls (4, 5) comprising first and second fixed spiral wraps (9, 12), an orbiting scroll arrangement (7) comprising first and second orbiting spiral wraps (14, 15), the first fixed spiral wrap (9) and the first orbiting spiral wrap (14) forming a plurality of first compression chambers (16) and the second fixed spiral wrap (5) and the second orbiting spiral wrap (15) forming a plurality of second compression chambers (17). The scroll compressor further includes a drive shaft (23) adapted for driving the orbiting scroll arrangement (7) in an orbital movement, and a driving motor (24) arranged for driving in rotation the drive shaft (23) about a rotation axis, the driving motor (24) being located nearby the first fixed scroll (4). The first fixed scroll (4) includes at least one first discharge passage (21) arranged to conduct the refrigerant compressed in the first compression chambers (16) towards the driving motor (24).