Abstract:
A method and apparatus are described for avoiding a collision between a scheduling request (SR) and a periodic rank indicator (RI) report or a periodic channel quality indicator (CQI)/precoding matrix indicator (PMI) report.
Abstract:
A method and apparatus for generating channel quality indicator (CQI), precoding matrix indicator (PMI) and rank information are disclosed. The method and apparatus reduces feedback overhead and defines differential CQI information in an orthogonal frequency division multiplex (OFDM) symbol.
Abstract:
A method and apparatus for constraining power amplifier (PA) imbalance includes using a constant modulus (CM) criterion to ensure PA balance whe using differential feedback. An approach of combined differential and non- differential feedback is considered.
Abstract:
The transmission and decoding of resource blocks (RBs) transmitted via a multiple-input multiple-output (MIMO) antenna having a plurality of transmit antennas is disclosed. Each RB includes a plurality of resource elements (REs). Each RE is reserved for one of a common reference signal (CRS) associated with one of the transmit antennas, a dedicated reference signal (DRS) including a single beamformed or precoded pilot, a DRS including a composite beamformed or precoded pilot, and a data symbol. Each RB may include a "control type" data symbol that indicates a DRS mode associated with the RB. In one DRS mode, each DRS includes a single beamformed or precoded pilot. In another DRS mode, each DRS includes a composite beamformed or precoded pilot. In yet another DRS mode, single beamformed or precoded pilots, and composite beamformed or precoded pilots, may coexist and be transmitted simultaneously within the same RBs or in different RBs.
Abstract:
A method and apparatus for reducing a peak-to-average power ratio (PAPR) in a multiple-input multiple-output (MIMO) wireless communication system are disclosed. Transmit beamforming or precoding is performed on transmit symbols based on a channel matrix. For feedback, channel matrices may be averaged over multiple subcarriers and the averaged channel matrices may be further quantized. In order to reduce the PAPR, amplitude clipping may be performed on the symbols after the transmit processing. The amplitude clipping may be performed by hard clipping, soft clipping, or smooth clipping.
Abstract:
A method and apparatus for performing uplink transmission in a multiple-input multiple-output (MIMO) single carrier frequency division multiple access (SC-FDMA) system are disclosed. At a wireless transmit/receive unit (WTRU), input data is encoded and parsed into a plurality of data streams. After modulation and Fourier transform, one of transmit beamforming, space time coding (STC) and spatial multiplexing is selectively performed based on channel state information. Symbols are then mapped to subcarriers and transmitted via antennas. The STC may be space frequency block coding (SFBC) or space time block coding (STBC). Per antenna rate control may be performed on each data stream based on the channel state information. At a Node-B, MIMO decoding may be performed based on one of minimum mean square error (MMSE) decoding, MMSE-successive interference cancellation (SIC) decoding and maximum likelihood (ML) decoding. Space time decoding may be performed if STC is performed at the WTRU.
Abstract:
A method and system is disclosed for enhancing reception of wireless communication signals. A beam pattern including at least one set of beams is generated. Where the beam pattern includes at least two sets of beams, the beam sets may be offset with respect to each other and alternated to enhance reception. Beams may be selected for data processing based on a signal-to-noise ratio (SNR) and may be maximal-ratio combined where signals from a single WTRU are detected within more than one beam and are used for data processing.
Abstract:
Symbols are to be recovered from signals received in a shared spectrum. Codes of the signals received in the shared spectrum are processed using a block Fourier transform (FT 34), producing a code block diagonal matrix. A channel response of the received signals is estimated. The channel response is extended and modified (36) to produce a block circulant matrix and a block FT (38) is taken, producing a channel response block diagonal matrix. The code block diagonal matrix is combined (40, 44, 46) with the channel response block diagonal matrix. The received signals are sampled and processed using the combined code block diagonal matrix and the channel response block diagonal matrix with a Cholesky algorithm. A block inverse FT (60) is performed on a result of the Cholesky algorithm to produce spread symbols. The spread symbols are despread to recover symbols of the received signals.
Abstract:
A method and system for performing initial cell search is disclosed. Step 1 (208) processing is preformed to detect a peak primary synchronization code (PSC) location (i.e. chip offset or chip location). Step 2 (210) processing is performed to obtain the toffset and code group. Step 3 (212) processing is performed to identify the midamble of a base station with which the WTRU performing the initial cell search may synchronize with.
Abstract:
A wireless communication system, method and apparatus are provided for soft and softer handover of a mobile wireless transmit/receive unit (WTRU) between two or more base stations and/or base station sectors. A network control unit assigns selected base stations to transmit communication data to the WTRU based on the WTRU being disposed in base station or base station sector geographic range of service. A WTRU joint detector (JD) receiver is configured to receive and process one or more wireless data signals in each of a series of timeframes where each signal received within a common timeslot has a unique channel encoding of the same communication data. The JD receiver has a plurality of channel estimators that estimate received signals within a common timeslot and a combiner configured to decode and combine the channel estimates to derive a resultant data signal.