Abstract:
A system integration of multicomponent technologies includes an automated microfluidic probe station and the use of that station for the systematic study of nonideal, nonhomogeneous biological fluids such as blood in microfluidic chips. The probe station provides for real-time, non-invasive metrology of microfluidic chips employing optical coherence tomography and optical Doppler tomography to allow for collection of flow data at any location or depth within a microfluidics chip. Also included is a programmable fluidic loader and actuator platform as part of the probe station, and a semi-automated rapid prototyping tool used to fabricate the microfluidic chips measured on the probe station. The resulting data library produced by measurements on the probe station contains all the necessary information needed to develop mature, accurate microfluidic modeling and simulation CAD tools.
Abstract:
Frequency addressable micro-actuators having one or more movable resonating elements actuators, such as cantilevers, can be forced into oscillation by, e.g., electromagnetic actuation. The movable structure is designed to latch at a certain amplitude using one of several latching techniques, such as a near-field magnetic field. In operation, the movable element is driven into resonance, producing a large amplitude, which results in the structure latching. Through resonance, a small force applied in a repeating manner can result in the latching of the actuator, an operation which would normally require a large force. If two or more units, each with different harmonic frequencies, are placed under the same influence, only the one with a harmonic response to the driving force will latch. A single influencing signal may be used to latch more than one device on demand by tuning the frequency to match the natural frequency of the device of interest.
Abstract:
Systems and methods for producing micromachined devices, including sensors, actuators, optics, fluidics, and mechanical assemblies, using manufacturing techniques of lead frames, substrates, microelectronic packages, printed circuit boards, flex circuits, and rigid-flex materials. Preferred embodiments comprise using methods from post-semiconductor manufacturing to produce three-dimensional and free-standing structures in non-semiconductor materials. The resulting devices may remain part of the substrate, board or lead frame which can then used as a substrate for further packaging electronic assembly operations. Alternatively, the devices may be used as final components that can be assembled within other devices.
Abstract:
A micromachined microphone or speaker embedded within, or positioned on top of, a substrate suitable for carrying microelectronic chips and components. The acoustic element converts sound energy into electrical energy which is then amplified by electronic components positioned on the surface of the substrate. Alternatively, the acoustic element may be driven by electronics to produce sound. The substrate can be used in standard microelectronic packaging applications.
Abstract:
Systems and methods are providing for performing high-throughput, programmable, multiplexed assays of biological, chemical or biochemical systems. Preferably, a micro-pallet includes a small flat surface designed for single adherent cells to plate, a cell plating region designed to protect the cells, and shaping designed to enable or improve flow-through operation. The micro-pallet is preferably patterned in a readily identifiable manner and sized to accommodate a single cell to which it is comparable in size. Each cell thus has its own mobile surface. The cell can be transported from place to place and be directed into a system similar to a flow cytometer. Since, since the surface itself may be tagged (e.g., a bar code), multiple cells of different origin and history may be placed into the same experiment allowing multiplexed experiments to be performed.
Abstract:
Systems and methods are provided that facilitate the formation of micro-mechanical structures and related systems on a laminated substrate. More particularly, a micro-mechanical device and a three-dimensional multiple frequency antenna are provided for in which the micro-mechanical device and antenna, as well as additional components, can be fabricated together concurrently on the same laminated substrate. The fabrication process includes a low temperature disposition process allowing for deposition of an insulator material at a temperature below the maximum operating temperature of the laminated substrate, as well as a planarization process allowing for the molding and planarizing of a polymer layer to be used as a form for a micro-mechanical device.
Abstract:
A microfluidic dynamic vapor control system adapted to change the chemistry of small drops by dynamically controlling the vapor content surrounding the drops. The small volume surface area ratio makes this an efficient mechanism for controlling chemistry in nanovolumes. The system uses small reservoirs of material that can produce vapor on demand, and microfluidic channels that direct the vapor into a small chamber that holds a drop of the solution of interest. By changing the vapors that enter the chamber, the chemical composition of the drop can be modified.
Abstract:
Improved protection circuits are provided for use as voltage overload protection circuits, ESD protection circuits for RF input pins, and unit protection cells for distributed amplifiers. Preferably, the protection circuits include a positive threshold voltage trigger used to trigger a switch wherein the trigger includes a diode string in series with a resistor and the switch includes a bipolar transistor switch in series with a diode. Alternatively, the trigger includes a diode string in series with a single diode and a single resistor, and is used to trigger a Darlington pair transistor switch in series with a diode. In another embodiment, a Darlington pair transistor switch is triggered by a capacitor. In use with distributed amplifiers, the ESD protection circuits are preferably absorbed inside the artificial transmission lines of the distributed amplifier.
Abstract:
A plate manufactured to enable samples of cells, micro-organisms, proteins, DNA, biomolecules and other biological media to be positioned at specific locations or sites on the plate for the purpose of performing addressable analyses on the samples. Preferably, some or all of the sites are built from a removable material or as pallets so that a subset of the samples of interest can be readily isolated from the plate for further processing or analysis. The plate can contain structures or chemical treatments that enhance or promote the attachment and/or function of the samples, and that promote or assist in their analyses. Use of the plate advantageously enables the selection and sorting of cells based on dynamic phenomena and the rapid establishment of stable tranfectants.
Abstract:
Provided herein is a power amplifier having a multiple stage power amplifier section and an output matching network section. The multiple stage power amplifier section can include multiple power amplifier stages with interstage matching circuits located therebetween. The output matching network can be configured to match the multiple stage power amplifier section at multiple different frequencies or frequency bands. The power amplifier device is capable of selective operation within one of multiple different frequencies or frequency bands.