Abstract:
A composition for fused filament fabrication may include polylactic acid resin and talc. The composition may range from 50% by weight to 99% by weight polylactic acid resin, and from 7% by weight to 40% by weight talc. The composition may be configured as filaments or pellets adapted to be used in a fused filament fabrication process. A method for generating a resin-based structure may include providing a resin source that may include polylactic acid resin and talc. The resin source may include from 50% by weight to 99% by weight polylactic acid resin, and from 7% by weight to 40% by weight talc. The method may also include heating the resin source to a temperature greater than the melting temperature for semi-crystalline resins or significantly greater than glass transition temperature for amorphous resins, and depositing the heated resin source in a layered manner to form the resin-based structure.
Abstract:
A deaerated talc may include micronized, talc powder having a Hegman rating of 4.0 or greater. A deaerated talc may include micronized talc powder having enough cohesive strength for form agglomerations measuring 100 millimeters or less, 75 millimeters or less, or 50 millimeters or less. A deaerated talc product may include a micronized talc powder, and a bag containing the deaerated talc. The micronized talc powder may be deaerated via application of force to the micronized talc powder in at least two directions, including a first direction substantially parallel to the longitudinal direction of the bag and a second direction.
Abstract:
A barrier coating for paper and a method of making the coated paper using a wax coating composition containing an inorganic mineral filler is provided. The inorganic mineral filler imparts a viscosity to the wax coating composition similar to the viscosity of the wax coating composition in the absence of the inorganic mineral filler. Coated paper products are also provided.
Abstract:
A reinforced resin composition may include a polycarbonate, a functionalizing agent, and an inorganic filler that has been functionalized with the functionalizing agent, the functionalized inorganic filler being present in an amount ranging from 1 to 25 percent by weight of the resin composition. The reinforced resin may exhibit a melt flow index of 25 or less, when measured at a load of 1.2 kg, after allowing the resin to remain at a temperature of 300° C. for 10 minutes. A method of reducing thermal degradation of a reinforced polycarbonate material may include introducing into said polycarbonate material at least one inorganic filler functionalized with a functionalizing agent, such that the reinforced resin exhibits a melt flow index of 25 or less, when measured at a load of 1.2 kg, after allowing the resin to remain at a temperature of 300° C. for 10 minutes.
Abstract:
A composition may include a first talc having a morphology index less than or equal to about 0.6 and a second talc having a morphology index greater than or equal to about 0.6. The first talc and the second talc may form a talc composition, and the talc composition may have a content ratio of the first talc to the second talc ranging from about 30:70 by weight to about 80:20 by weight. A polymer composition may include a polymer matrix and a filler composition. The filler composition may include a first talc having a morphology index less than or equal to about 0.8 and a second talc having a morphology index greater than or equal to about 0.8, The filler composition may have a content ratio of the first talc to the second talc ranging from about 30:70 by weight to about 80:20 by weight. The first talc may be a microcrystalline talc. The second talc may be a macrocrystalline talc.
Abstract:
The present invention relates to a process for controlling deposits in a paper making process, more particularly to a process comprising the use of talc for controlling deposits in a paper making process with talc. One aspect of the invention is contacting talc with a white water stream at one or more locations within the paper making process after separating pulp from a pulp-containing stream and before introducing the re-circulating the white water stream to one or more of a pulper, a thick-stock, a thin-stock, a dilution process, a shower, a storage vessel, a blending process, and a digestor.