Abstract:
The present invention is directed to the manufacture of "seamless" photosensitive printing elements from substantially planar printing plate blanks wrapped around cylindrical printing sleeves or carriers. The method comprises the steps of cutting a photosensitive printing element to a size for wrapping around a printing sleeve, trimming ends of the photosensitive printing element to create a gap when the printing element is wrapped around the printing sleeve, attaching the photosensitive printing element to the printing sleeve and filling the gap between the ends of the photosensitive printing element with a filler material.
Abstract:
An automated method of preventing edge curing of cut surfaces of photosensitive printing elements is disclosed. Once a photosensitive printing element is cut in a pattern of a desired size and shape, a portion of the coversheet on a periphery of the cut edges of the printing plate is removed, while leaving intact the layer of photocurable material and the optional ablation layer beneath the coversheet. Next, an edge cure prevention composition is applied to the optional ablation layer or the layer of photocurable material revealed by the removal of the portion of the coversheet. Once the edge cure prevention composition is dried, the remainder of the coversheet may be removed from the photosensitive printing element and the printing element may be mounted on a sleeve or cylindrical carrier for further processing. The method ensures that the edge cure prevention composition is applied only to areas where it is needed and does not affect imageable areas of the printing plate.
Abstract:
An improved apparatus and a method of using the apparatus to remove non- crosslinked photopolymer from an imaged and exposed surface of a relief image printing element. Included are means for supporting and rotating the printing element, means for softening and/or melting non-crosslinked photopolymer on the imaged and exposed surface of the printing element, and at least one thermal developing assembly. The thermal developing assembly includes means for supplying an absorbent material that is contactable with the printing element, and that is capable of removing at least a portion of the softened and/or melted non-crosslinked photopolymer, and means for causing the absorbent material to contact at least a portion of the printing element. The absorbent material is backed with an endless impression belt that is supported by a plurality of rollers. When the absorbent material contacts the surface of the printing element, softened and/or melted non-crosslinked photopolymer on the surface of the printing element is removed.
Abstract:
An improved apparatus and a method of using the apparatus to remove non- crosslinked photopolymer from an imaged and exposed surface of a relief image printing element. Included are means for supporting and rotating the printing element, means for softening and/or melting non-crosslinked photopolymer on the imaged and exposed surface of the printing element, and at least one thermal developing assembly. The thermal developing assembly includes means for supplying an absorbent material that is contactable with the printing element, and that is capable of removing at least a portion of the softened and/or melted non-crosslinked photopolymer, and means for causing the absorbent material to contact at least a portion of the printing element. The absorbent material is backed with an endless impression belt that is supported by a plurality of rollers. When the absorbent material contacts the surface of the printing element, softened and/or melted non-crosslinked photopolymer on the surface of the printing element is removed.
Abstract:
L'invention concerne un blanchet d'impression destiné à être monté sur un cylindre de support (2) rotatif d'une machine d'impression, en forme de feuille dont les extrémités configurées en bords d'attaque (3) et de fuite (4) sont adaptées pour être engagées dans une fente (6) de fixation axiale du cylindre de support (2). Le blanchet (1) est caractérisé en ce qu'il présente une structure multicouches à base de film et de renfort fibreux. L'invention est utilisable dans le domaine des machines d' impression.
Abstract:
An improved method of manufacturing a photosensitive printing element that minimizes relief variation and improves image fidelity. The method involves a step of pre-curing the first (floor layer) of photocurable material prior to depositing an additional layer or layers of photocurable material that may be imaged and developed to produce a desired relief image on the surface of the photosensitive printing element. The photosensitive printing element is then thermally developed by contacting the photosensitive printing element with at least one roll that is capable of moving over at least a portion of the imaged surface of the flexographic printing element to remove the softened or melted non-crosslinked photopolymer. Non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element can be softened or melted by positioning a heater adjacent to the imaged surface of the flexographic printing element and/or heating the at least one roll that contactable with the imaged surface of the flexographic printing element.
Abstract:
An inkjet printer is used to apply an ink that is substantially opaque to actinic radiation in at least one wavelength region effective to cure the photosensitive printing plate to the edges and corners, of a printing plate after the plate has been trimmed (i.e., cut) to a suitable size and shape for mounting on a printing sleeve or cylinder. Use of inkjet printing allows for the cut surfaces of the plate to quickly and accurately be coated with a UV-opaque ink and prevents, or substantially eliminates, undesirable curing of cut surfaces of a photosensitive printing plate. The ink covers the photocurable surfaces exposed by the cutting process and prevents the cut surfaces of the printing plate from undesirably curing until proper exposure and development of the printing plate.
Abstract:
The present invention is directed to a method of selectively pre-exposing a photosensitive printing element prior to imagewise exposure in order to remove oxygen from the photosensitive layer prior to imagewise exposure. The invention is usable in a computer-to-plate process to produce flexographic relief image printing elements.
Abstract:
An improved thermal development apparatus is used to remove uncured photopolymer from the imaged surface of a flexographic printing element. The apparatus typically comprises one or more heatable rolls that are contactable with an imaged surface of a flexographic printing element; and means for maintaining contact between the one or more heatable rolls and theimaged surface of the flexographic printing element. The one or more heatable rolls are heated and is moved over at least a portion of the imaged surface of the flexographic printing element, and non-crosslinked polymer on the imaged surface of the flexographic printing element is melted and removed by the one or more heatable rolls.
Abstract:
Laser imageable flexographic printing elements, including printing plates and printing sleeves and methods of making the laser imageable flexographic printing elements using a collapsible cross-linkable material comprising a curable elastomer, a material that absorbs laser radiation at a selected wavelength, and microspheres are disclosed. A laser is used to collapse and melt the collapsible cross-linkable material to form a relief image on the printing element. The printing element is thereafter cured by face exposure to crosslink and cure the formed relief image. The invention addresses a market need for eliminating chemical processing of printing elements, thus going from printing element to press much more quickly and using an environmentally friendly process.