Abstract:
An electronic device is provided that includes a housing and a connector assembly coupled to the housing. The connector assembly can include a microphone port. The electronic device can further include a microphone mounted within the housing and a channel that fluidically couples the microphone to the microphone port. A joint connector and microphone assembly is also provided. The assembly can include a microphone with a top surface and side surfaces. The top surface of the microphone can include a microphone input. The assembly can include a microphone boot mounted to the microphone such that the boot interfaces with a portion of the top surface and the side surfaces to form a seal around the microphone input. The microphone boot can include a connector sealing portion and an aperture for fluidically coupling the microphone input to a microphone port. The assembly can include a connector plate mounted to the connector sealing portion.
Abstract:
An input device that includes both a movement detector, such as mechanical switch, and positional indicator, such as touch pad touch screen, and/or touch sensing housing is disclosed. These two input devices can be used substantially simultaneously to provide a command to the device. In this manner, different commands can be associated with depressing a moveable member in different areas and a single moveable member can perform like several buttons.
Abstract:
Methods and apparatus for creating an integral assembly formed from a transparent member and a housing formed at least in part of a bulk-solidifying amorphous alloy. The methods and systems create integral transparent member and amorphous metal alloy-containing parts using thermoplastic molding techniques in which the amorphous metal is molded to the transparent member in a thermoplastic, not liquid, state.
Abstract:
An apparatus with a vessel (20), a first induction source (30), and a second induction source (32) in the melt zone (12). The first induction source (30) is used to melt the material received in the vessel (20). The second induction source (32) is used to contain the material in a meltable form within the vessel (20) during melting. The coils (26) of each of the first and second induction sources (30,32) can be arranged such that they intertwine in an alternate fashion or that they are in sets in a series. The coils (26) of the sources (30,32) can also sequentially receive power such that the material is moved through the ejection path after melting and into an adjacent mold. The vessel (20) can be positioned along a horizontal axis (X). The apparatus can be used to melt and mold amorphous alloys; for example.
Abstract:
Disclosed herein are consumer electronics housings made from bulk-solidifying amorphous alloy materials having a ductile coating applied to all or a portion of the bulk-solidifying amorphous alloy. Also disclosed are methods of making consumer electronic housings from bulk- solidifying amorphous alloy materials such that at least a portion of the bulk-solidifying amorphous alloy housing is coated with a ductile cladding material.
Abstract:
Methods and apparatus for creating an integral assembly formed from a transparent member and a housing formed at least in part of a bulk-solidifying amorphous alloy. The methods and systems create integral transparent member and amorphous metal alloy-containing parts using thermoplastic molding techniques in which the amorphous metal is molded to the transparent member in a thermoplastic, not liquid, state.
Abstract:
Described herein is a method of producing an alloy. The method includes pouring a stream of molten mixture of component elements of the alloy, separating the stream into discrete pieces, solidifying the discrete pieces by cooling before the discrete pieces contact any liquid or solid. Also described herein is another method of producing an alloy. This method includes pouring and solidifying a stream of molten mixture of component elements of the alloy into a rod or pulling a rod from a molten mixture of component elements of the alloy, before the rod contacts any liquid or solid, separating the rod into discrete pieces. An apparatus suitable for carrying out the methods above can include a container from which the molten stream is poured or the solid rod extends, one or more coil, conductive plates, a laser source, or an electron beam source arranged around the molten stream or the solid rod and configured to separate the molten stream or the solid rod into discrete pieces.
Abstract:
Provided in one embodiment is a method, comprising: providing a first part comprising a protruding portion, wherein the protruding portion comprises an alloy that is at least partially amorphous; providing a second part comprising an opening; disposing the second part in proximity of the first part such that the protruding portion traversed through the opening; and mating the protruding portion and the opening at a first temperature to shape the protruding portion into an interlock joining the first part and the second part.
Abstract:
An electronic device having a unitary housing is disclosed. The device can include a first housing component having an open cavity, an internal electronic part disposed within the cavity, a second housing component disposed across the cavity, and a support feature disposed within the cavity and arranged to support the second housing component. The first housing component can be formed from metal, while the second housing component can be formed from a plurality of laminated foil metal layers. The second housing component can be attached to the first housing component via one or more ultrasonic welds, such that a fully enclosed housing is created. The fully enclosed housing can be hermetically sealed, and the outside surfaces thereof can be machined or otherwise finished after the ultrasonic welding.
Abstract:
Apparatus, systems and methods for improving chemical strengthening of glass are disclosed. In one embodiment, a mechanical stress can be induced on a glass article while undergoing chemical strengthening. In another embodiment, vibrations, such as ultrasonic vibrations, can be induced during chemical strengthening of a glass article. The use of mechanical stress and/or vibrations during chemically strengthening of a glass article can enhance the effectiveness of the chemical strengthening process. Accordingly, glass articles that have undergone chemical strengthening processing are able to be not only thin but also sufficiently strong and resistant to damage. The strengthened glass articles are well suited for use in consumer products, such as consumer electronic devices (e.g., portable electronic devices).