Abstract:
A light projection system includes a light module emitting a light beam and a movable mirror reflecting the light beam toward a surface. A graphics processing unit processes video data to compensate for a response of the light module. The response is an optical power of the light beam produced by the light module for a given forward current through the light module. A light source driver controls the light module as a function of the processed video data. Colors of the images from the video data produced on the surface by the light beam would otherwise not look as they are intended to look due to changing of the response of the light module, but the processing of the video data alters the video data such that the colors of the images from the video data produced on the surface look as they are intended to look.
Abstract:
A device disclosed herein includes a feedback measuring circuit to measure a signal flowing through a movable MEMS mirror. Processing circuitry determines a time at which the signal indicates that a capacitance of the movable MEMS mirror is substantially at a maximum capacitance. The processing circuitry also determines, over a window of time extending from the time at which the signal indicates that the capacitance of the movable MEMS mirror is substantially at the maximum to a given time, a total change in capacitance of the movable MEMS mirror compared to the maximum capacitance. The processor further determines the capacitance at the given time as a function of the total change in capacitance, and determines an opening angle of the movable MEMS mirror as a function of the capacitance at the given time.
Abstract:
An electronic device disclosed herein includes a mirror controller configured to generate a drive control signal, with a drive circuit configured to generate a drive signal for a movable mirror based upon the drive control signal. A sensing circuit is configured to sense the drive signal. The mirror controller is further configured to adjust the drive control signal as a function of the sensed drive signal.
Abstract:
Disclosed herein is a circuit for determining failure of a movable MEMS mirror. The circuit includes a mirror position sensor associated with the movable MEMS mirror and that generates an analog output as a function of angular position of the movable MEMS mirror. An analog to digital converter converts the analog output from the mirror position sensor to a digital mirror sense signal. Failure detection circuitry calculates a difference between the digital mirror sense signal at a first instant in time and the digital mirror sense signal at a second instant in time, determines whether the difference exceeds a threshold, and indicates failure of the movable MEMS mirror as a function of the difference failing to exceed the threshold.
Abstract:
A device disclosed herein includes a feedback measuring circuit to measure a signal flowing through a movable MEMS mirror. Processing circuitry determines a time at which the signal indicates that a capacitance of the movable MEMS mirror is substantially at a maximum capacitance. The processing circuitry also determines, over a window of time extending from the time at which the signal indicates that the capacitance of the movable MEMS mirror is substantially at the maximum to a given time, a total change in capacitance of the movable MEMS mirror compared to the maximum capacitance. The processor further determines the capacitance at the given time as a function of the total change in capacitance, and determines an opening angle of the movable MEMS mirror as a function of the capacitance at the given time.
Abstract:
A device described herein includes a movable MEMS mirror, with a driver configured to drive the movable MEMS mirror with a periodic signal such that the MEMS mirror oscillates at its resonance frequency. A feedback measuring circuit is configured to measure a signal flowing through the movable MEMS mirror. A processor is configured to sample the signal at first and second instants, generate an error signal as a function of a difference between the signal at the first instant in time and the signal at the second instant in time, and determine the opening angle of the movable MEMS mirror as a function of the error signal.
Abstract:
A touch controller is coupled to a touch screen and detects a first gesture at a first point on the touch screen. The first gesture includes physical contact of the touch screen by a user device at the first point. The touch controller detects a second gesture that is associated with movement of the user device from the first point to a second point on the touch screen. The second gesture includes detecting movement of the user device within a sensing range from the first point to the second point. The sensing range corresponds to an orthogonal distance from a surface of the touch screen. The touch controller detects a third gesture at the second touch point. The third gesture includes physical contact of the touch screen at the second touch point. Upon detecting the first, second and third gestures the touch controller performs a corresponding action.
Abstract:
An image sensor includes an array of pixels, with each pixel including a photodiode, and a first output circuit for deriving a linear output signal by applying a reset signal to the photodiode and reading a voltage on the photodiode after an integration time. A second output circuit derives a logarithmic output signal by reading a near instantaneous illumination-dependent voltage on the photodiode that is a logarithmic function of the illumination. In the logarithmic mode, the pixels are calibrated to remove fixed pattern noise. The pixels may be operated in linear and log modes sequentially, with the linear output being selected for low light signals and the log output being selected for high light signals.
Abstract:
A CMOS image sensing structure includes a photodiode, in which an epitaxial layer is on a P-type substrate. The photodiode includes an N-well collection node in the epitaxial layer. An isolation trench is provided around the collection node to provide better control of the width of the collection node. The collection node can be surrounded by P-wells or by epitaxial material. It can also be surrounded by epitaxial material with the isolation trench being outwardly extended to ensure compliance with existing design rules.
Abstract:
Data is encoded in a solid state image sensor that includes a sensor pixel array by varying the color processing applied to at least some of the border pixels of the sensor pixel array. Data may be encoded in the color processing by varying the pattern of a color filter mosaic and by varying a pattern of a microlens array in accordance with a predetermined scheme. This scheme includes omission of color filter material and omission of the microlens array from selected pixels. The data, typically encoded in a binary format, is read by illuminating the sensor pixel array and by processing the output signals from the border pixels. The encoded data may include color process codes, mask revision codes and product codes.