Abstract:
Articles and methods for determining an analyte indicative of a disease condition are provided. In some embodiments, articles and methods described herein can be used for determining a presence, qualitatively or quantitatively, of a component, such as a particular type of cell, in a fluid sample. In one particular embodiment, a low-cost microfluidic system for rapid detection of T cells is provided. The microfluidic system may use immobilized antibodies and adhesion molecules in a channel to capture T cells from a fluid sample such as a small volume of blood. The captured T cells may be labeled with a metal colloid (e.g., gold nanoparticles) using an antibody specific for the T Cell Receptor (TCR), and metallic silver can be catalytically precipitated onto the cells. The number of T cells captured can be counted and may indicate a disease condition of a patient such as severe combined immune deficiency or human immunodeficiency virus.
Abstract:
The present invention generally relates to systems and methods for acquiring multiple spectra from a sample, for example, a microfluidic sample. In some aspects of the invention, spectra from a series of locations within a sample are recorded and analyzed, and optionally correlated with an image of the sample. The spectra can be obtained by passing a plurality of light beams through a sample, e.g., using an array of microlenses, diffracting the light beams passing through the sample with a transmission grating, before or after passing the light through the sample, and detecting the resulting light, e.g., as an image. The light beams may pass through the sample before or after passing through the transmission grating. The image can appear as an array of discrete spectra, where each spectrum is associated with a region of the sample where a light beam passed through the sample. The spectra can be analyzed to determine information about the region where the light beam passed through the sample. In some cases, the array of microlenses may be movable and/or replaceable with a second array of microlenses. Also, in some instances, the transmission grating may be movable and/or replaceable with a second transmission grating.
Abstract:
The invention relates to methods and apparatuses for guiding and emitting electromagnetic radiation from a fluid waveguide. Various methods for changing optical properties (e.g., refractive index, absorption, and fluorescence) and/or physical properties (e.g., magnetic susceptibility, electrical conductivity, and temperature) of either the waveguide core or the cladding, or both, are provided herein. In one embodiment, electromagnetic radiation is guided and/or emitted at multiple distinct wavelengths, including emission in the form of an essentially continuous band, in some cases covering at least 150 nanometers. In another embodiment, methods for splitting a waveguide core and/or the joining of at least two waveguide cores in a waveguide are provided. In yet another embodiment, the invention includes the use of thermal gradients to generate a waveguide and/or to change the properties of waveguides. Embodiments of the waveguides may be used for optical detection or spectroscopic analysis.
Abstract:
Method and device for storing and/or delivering fluids, wherein at least a first and a second fluid, such as chemical or biochemical reagents or rinse solutions, are maintained separately from each other in a common vessel and transferred in series from the vessel to a reaction site to carry out a predetermined chemical or biochemical reaction. Separation may be achieved by interposing a third fluid, e.g., a gaseous fluid plug, between the first and second fluids.
Abstract:
A microfluidic method and device for focusing and/or forming discontinuous sections of similar or dissimilar size in a fluid is provided. The device can be fabricated simply from readily-available, inexpensive material using simple techniques.
Abstract:
The present invention is directed to a method of patterning materials, such as proteins, on a contoured surface by depositing them onto protrusions on the surface and to a cell containment device that may be constructed by this method. In one embodiment, the present invention is directed to a method of selectively depositing a material on a substrate including a contoured surface including a protrusion and a recess. The method includes applying a first fluid to the contoured surface of the substrate and allowing the first fluid to distribute across a portion of the contoured surface such that the first fluid contacts the protrusion and not the recess. The method also includes allowing a first material to deposit on the substrate where the substrate is in contact with the first fluid. Optionally, this method may further include applying a second fluid to the contoured surface of the substrate, allowing the second fluid to distribute across a portion of the contoured surface such that the second fluid contacts the recess, and allowing a second material to deposit on the substrate where the substrate is in contact with the second fluid. Optionally, the method may still further include applying a third fluid to the contoured surface of the substrate, allowing the third fluid to distribute across a portion of the contoured surface, and allowing a third material with an affinity for one of the first material and the second material to deposit on the substrate only where the one of the first material and the second material is deposited. In one embodiment, of this method the first material is a cytophobic material, the second material is a cytophilic material and the third material is a cell. In another embodiment, the present invention is directed to a cell containment device, including a substrate having a contoured surface, a recess in the surface of the substrate, cytophobic material connected to the surface of the substrate outside the recess and a cytophilic material connected to the recess.
Abstract:
A method and apparatus for providing electric microcontact printing is provided. A stamp is brought into contact with the surface of a substrate to provide high resolution features. Aspects of the invention may be used for data storage, microcontact printing, and for other applications requiring high resolution pattern transfer.
Abstract:
Phosphate-binding polymers are provided for removing phosphate from the gastrointestinal tract. The polymers are orally administered, and are useful for the treatment of hyperphosphatemia.
Abstract:
Exemplary method and system for providing a diffractive configuration in an optical arrangement are provided. For example, a material can be provided with at least one patterned surface having a very high aspect ratio. The material can be connected with at least one portion of a waveguide arrangement using a pre-polymer adhesive composition. Further, the pre-polymer adhesive composition can be caused to polymerize so as to form the diffractive configuration which at least approximately replicates a structure or at least one feature of the patterned surface.
Abstract:
The ability to assemble three-dimensional structures using diamagnetic particles suspended in solutions containing paramagnetic cations is described. The major advantages of this separation device are that: (i) it is a simple apparatus that does not require electric power (aset of permanent magnets and gravity are sufficient for the diamagnetic separation and collection system to work); ii) the assembled structures can be removed from the paramagnetic solution for further processing after fixing the structure; iii) the assembly is fast; and iv) it is small, portable.