一种矩阵式编码方式的绝对式码盘的误差补偿方法

    公开(公告)号:CN104655156A

    公开(公告)日:2015-05-27

    申请号:CN201410853255.2

    申请日:2014-12-31

    Abstract: 一种矩阵式编码方式的绝对式码盘的误差补偿方法,涉及光电测量和自动控制领域。本发明解决了绝对式码盘处理误码能力不足的问题。所述方法包括如下步骤:一、利用四象限绝对式码盘读取相应码值;二、采用最外圈相差90度读数头,经过增量式码盘处理电路,读取增量式码盘值;三、给定阈值,计算两个码值的差;四、对于超过预值的绝对式码值用相应的增量式码值来代替。本发明采用实时检测的办法,利用矩阵式编码盘原有的结构,仅增加了增量式码盘的计数电路结构,可以弥补因多种因素造成的码值跳变,融合了绝对式、增量式的优点,一定程度上解决了高位码值译码和码盘尺寸的矛盾,增加的电路简单可靠,方便维护。

    一种双机热备份系统及该系统的故障检测方法

    公开(公告)号:CN103425553B

    公开(公告)日:2015-01-28

    申请号:CN201310403241.6

    申请日:2013-09-06

    Abstract: 一种双机热备份系统及该系统的故障检测方法,属于自动控制领域,本发明为解决现有双机热备份系统出现故障时,无法判定系统故障的类型的问题。本发明包括DSP主机、DSP备份机和电源控制板;它还包括复用GPIO端口、一号时钟同步模块、二号时钟同步模块和三号选择开关SW;对该系统进行同步时钟故障检测,该检测是由DSP主机1来检测,同步时钟作为DSP主机1与DSP备份机2的外部中断源使用,在DSP主机1中通过设置标志量来表示同步时钟是否有中断信号进入;通过检测此标志量实现同步时钟故障检测。该系统还可进行存储器故障检测、程序性故障检测、串口故障检测和DSP主机和DSP备份机的A/D、D/A自检。用在数据处理系统中。

    超精密光刻装备六自由度分散式复合控制系统及控制方法

    公开(公告)号:CN116819902B

    公开(公告)日:2024-01-23

    申请号:CN202310825107.9

    申请日:2023-07-06

    Abstract: 超精密光刻装备六自由度分散式复合控制系统及控制方法,涉及超精密光刻装备控制系统及方法。控制系统包括运动轨迹生成部分、反馈控制部分、前馈控制部分、解耦控制部分、六自由度运动台与位置测量部分,解耦控制部分包括静态解耦部分和动态解耦部分,静态解耦部分由增益规划矩阵、增益平衡矩阵和科氏力补偿矢量组成,动态解耦部分由动态解耦矩阵构成。反馈与前馈控制器设计简单,通过静动态结合的方式减少各自由度之间的串扰影响,提高控制精度。

    基于模型预测的纳米级精密运动台前馈控制方法

    公开(公告)号:CN115755627B

    公开(公告)日:2023-06-02

    申请号:CN202211624302.7

    申请日:2022-12-16

    Abstract: 本发明公开了一种基于模型预测的纳米级精密运动台前馈控制方法,所述方法包括系统扫频数据获取、系统模型辨识、虚拟系统构建以及模型预测前馈四部分。本发明通过设计虚拟系统,采用虚拟状态反馈的模型预测方法对系统进行精准前馈控制量补偿,既可以发挥模型预测控制强大的轨迹跟踪能力,又能利用虚拟系统屏蔽外界扰动的影响,保证前馈补偿输入的准确性。此外,使用系统虚拟系统避免了复杂的状态观测器设计问题,降低了前馈控制器设计难度,提高了纳米级精密运动台的估计跟踪性能。

    一种精密运动台特定频率扰动抑制方法

    公开(公告)号:CN112612210A

    公开(公告)日:2021-04-06

    申请号:CN202011474923.2

    申请日:2020-12-14

    Abstract: 本发明公开了一种精密运动台特定频率扰动抑制方法,所述方法包括如下步骤:一、由轨迹生成器Cr生成精密运动台P的期望位置信号r;二、测量P的实际位置信号y;三、将r与y作差,得到位置误差信号e,e经过反馈控制器C得到反馈控制信号ufb;四、前一周期的控制信号u经过滤波器Q之后得到信号uQ;五、计算Q与精密运动台名义模型P0的逆即的乘积,得到y经过之后得到uPQ;六、将uPQ与uQ作差得到扰动信号估计值七、将ufb与作差,得到当前周期控制信号u,u与外部扰动信号d的和up作用于P产生位置信号y。本发明不仅能够对一定频率范围内的扰动均起到一定的抑制作用,而且对特定频率扰动可以加强抑制能力,进一步提升精密运动台控制性能。

    一种矩阵式编码方式的绝对式码盘的误差补偿方法

    公开(公告)号:CN104655156B

    公开(公告)日:2017-06-06

    申请号:CN201410853255.2

    申请日:2014-12-31

    Inventor: 刘杨 崔宁 于志亮

    Abstract: 一种矩阵式编码方式的绝对式码盘的误差补偿方法,涉及光电测量和自动控制领域。本发明解决了绝对式码盘处理误码能力不足的问题。所述方法包括如下步骤:一、利用四象限绝对式码盘读取相应码值;二、采用最外圈相差90度读数头,经过增量式码盘处理电路,读取增量式码盘值;三、给定阈值,计算两个码值的差;四、对于超过预值的绝对式码值用相应的增量式码值来代替。本发明采用实时检测的办法,利用矩阵式编码盘原有的结构,仅增加了增量式码盘的计数电路结构,可以弥补因多种因素造成的码值跳变,融合了绝对式、增量式的优点,一定程度上解决了高位码值译码和码盘尺寸的矛盾,增加的电路简单可靠,方便维护。

    一种基于最小二乘法拟合曲线补偿光电编码器基准电压的方法

    公开(公告)号:CN104613986B

    公开(公告)日:2017-05-24

    申请号:CN201510060995.5

    申请日:2015-02-05

    Inventor: 刘杨 崔宁 于志亮

    Abstract: 一种基于最小二乘法拟合曲线补偿光电编码器基准电压的方法,本发明涉及补偿光电编码器基准电压的方法。本发明的目的是为了解决现有技术译码误差率高的问题。一种基于最小二乘法拟合曲线补偿光电编码器基准电压的方法具体是按照以下步骤进行的:步骤一、将光电编码器的光电信号离散化,通过A/D进行周期采样,得到采样的数据;步骤二、将采样的数据进行最小二乘法拟合曲线,得到最小二乘法拟合曲线方程式,计算得到最小二乘法拟合曲线方程式的最大值和最小值;步骤三、根据最小二乘法拟合曲线方程式的最大值和最小值,采用防脉冲干扰复合滤波法获得新的基准电压。本发明应用于光电编码器译码,补偿和最小二乘法拟合曲线等技术领域。

    星载绝对式光电码盘粗码译码电路及采用该电路实现的自适应采样法

    公开(公告)号:CN104596550B

    公开(公告)日:2017-05-03

    申请号:CN201510041410.5

    申请日:2015-01-28

    Inventor: 刘杨 崔宁 于志亮

    Abstract: 星载绝对式光电码盘粗码译码电路及采用该电路实现的自适应采样法,涉及光电轴角测量技术领域。解决了目前粗码采样译码电路存在的跳码、电路结构过于复杂及误码率高导致的采样精度低的问题。光电码盘的精码光电流信号输出端同时与1号采样电阻的一端和精码及中精码译码模块的电压信号输入端连接,1号采样电阻的另一端接电源地,精码及中精码译码模块的数字信号输出端与DSP处理器的精码数字信号输入端连接,DSP处理器的控制信号输出端与精码及中精码译码模块的控制信号输入端连接;光电码盘的粗码光电流信号输出端同时与2号采样电阻的一端和限流电阻的一端连接,2号采样电阻的另一端接电源地。它主要应用在光电轴角测量上。

    一种光电编码器精码零偏、幅值自适应补偿方法

    公开(公告)号:CN104482949B

    公开(公告)日:2017-01-25

    申请号:CN201410835368.X

    申请日:2014-12-29

    Inventor: 刘杨 崔宁 于志亮

    Abstract: 一种光电编码器精码零偏、幅值自适应补偿方法,它涉及的是光电编码器译码、补偿和调试等技术领域。为了解决现有的方法因复杂程度很高,译码电路的自适应性很差,而且观察示波器的得到的数据包含大量的人为误差,严重损耗了编码器的精度的问题。其补偿的步骤是:光电编码器的光电信号通过A/D采样,采用递推平均滤波法对采样数据进行一次滤波,变成新的数据,在一个采样周期内将新的数据点采用冒泡法向上向下分别取得最大值和最小值,对最大值和最小值用“中位数”的方法进行平滑估计得到估计波峰值和估计波谷值,采用一阶滞后滤波算法计算得到新的基准电压。本发明极大的减小地面测试和操作的难度,提高了测试精度和对外界环境的适应性。

    环境干扰下的水下无人航行器航迹跟踪动态面控制优化方法

    公开(公告)号:CN104932517A

    公开(公告)日:2015-09-23

    申请号:CN201510249412.3

    申请日:2015-05-15

    Abstract: 环境干扰下的水下无人航行器航迹跟踪动态面控制优化方法,本发明涉及水下无人航行器航迹跟踪动态面控制优化方法。本发明的目的是为了解决现有系统不能达到动态面控制技术对被控对象精确数学模型的要求,以及该系统抵抗扰动能力低的问题。通过以下技术方案实现的:步骤一、建立UUV水平面数学模型;步骤二、在UUV水平面数学模型的基础上进行动态面控制,得到UUV航迹跟踪控制律;步骤三、在UUV航迹跟踪控制律的基础上对动态面控制进行改进,得出动态面自抗扰控制器。本发明应用于航行器领域。

Patent Agency Ranking