Abstract:
본 발명은 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법에 관한 것으로, 층상계 산화물의 LiMO 2 (M= Ni, Co, Ti, Zr 등)에서 M의 Ni 함량이 65% 이상으로 증가하더라도 고온 환경에서의 전지 특성과 열안정성을 제공하기 위한 것이다. 본 발명은 Ni, Co 및 Mn을 포함하는 전이금속 전구체의 표면에 이종금속(M)을 코팅한 후 리튬 소스와 열처리하여 상기 이종금속(M)이 상기 Ni, Co 및 Mn 중 일부와 치환되어 아래의 화학식1로 표현되는 리튬이차전지용 양극 활물질을 제공한다. [화학식 1] LiNi a Co b Mn c M d O 2 (0.6
Abstract:
The present invention relates to a cathode material for a non-aqueous lithium secondary battery by using a spherical transition metal composite carbonate, and a manufacturing method thereof, which are to be able to realize a high capacity more than 200 mAh/g by improving the electrochemical activity of the final cathode material by manufacturing a spherical transition metal composite carbonate uniformly including nano-sized titanium dioxide by using a precipitation reaction in liquid. According to the present invention, a cobalt material, a nickel material, a manganese material, a carboxyl group material, a hetero-metal material for substitution and an ammonia material are precipitated to have a composition ratio of the chemical formula, Ni_xCo_yMn_1-x-y-zTi_2CO_3 (0.0
Abstract:
본 발명은 구형의 수산화코발트를 이용한 비수계 리튬이차전지용 양극재료의 제조 방법에 관한 것으로, 액상에서의 침전반응을 이용하여 이종금속이 균일하게 치환되어 있는 구형의 수산화코발트를 제조함으로써 최종 양극재료의 고전압에서의 구조 붕괴를 억제하여 수명특성을 향상시키기 위한 것이다. 본 발명에 따르면, 코발트원료, 수산화기원료, 치환용 이종금속원료 및 아민계원료를 화학식, Co 1-x M x (OH) 2 (0.00
Abstract:
PURPOSE: A cathode material for a secondary battery is provided to obtain a positive electrode material which can conduct insertion/separation of lithium/sodium by conducting a blending treatment by only one synthetic process without complex process. CONSTITUTION: A cathode material comprises a composite of LiMnPO4 and Na2MNPO4F. The mixing ratio of the composite is xLiMnPO4/(1-x)Na2MnPO4F, where X is 0
Abstract:
PURPOSE: A uniformly distributed precursor of a positive electrode active material is provided to manufacture a positive electrode active material with high discharging capacity of 220mAhg^-1 or more, uniform transition metal distribution and high density. CONSTITUTION: A uniformly distributed precursor is represented by chemical formula 1: Ni_xCo_yMn_(1-x-y-z)M_z(OH)_2, and has an ion concentration deviation of 3 weight% or less in the precursor. In chemical formula 1, 0
Abstract:
본 발명은 비수계 리튬이차전지용 양극재료 및 그의 제조 방법에 관한 것으로, 슬러리의 고분산(High dispersion) 및 이의 분무건조를 통한 고밀도의 구형 전구체를 제조함으로써 일차입자 간의 치밀도가 높은 구형의 스피넬형 리튬망간산화물을 제조하여 열화를 억제하면서 충방전 효율 및 출력 특성을 향상시키기 위한 것이다. 본 발명에 따르면, 리튬원료, 망간원료, 알루미늄원료 및 마그네슘원료를 혼합하여 균일하게 습식 분쇄하여 슬러리를 제조한다. 슬러리를 일정 속도로 회전시켜 얻은 고분산 슬러리를 제조한다. 고분산 슬러리를 열풍 건조하여 구형의 전구체를 제조한다. 그리고 구형의 전구체를 열처리하여 양극재료를 제조한다. 이때 리튬원료, 망간원료, 알루미늄원료 및 마그네슘원료는 화학식, Li 1+x Mn 2-y Mg z Al w O 4 (0.00
Abstract:
PURPOSE: A non-aqueous positive electrode material for lithium secondary battery using spherical porous oxide cobalt is provided to improve lifetime performance and to facilitate diffusion of lithium by obtaining structural stability even under 4.5 V. CONSTITUTION: A manufacturing method of a non-aqueous positive electrode material for lithium secondary battery comprises a spherical cobalt hydroxide with substituted hetero metal by impregnating aqueous solution in which cobalt raw material, hydroxyl group raw material, hetero metal raw material and ammonia raw material are mixed; and a step of manufacturing a porous oxide cobalt by heat-treating oxide cobalt. In the oxide cobalt manufacturing step, the oxide cobalt has a composition ratio of Co_(1-x)M_x(OH)_2 and average particle diameter of 5-25 micron, and in here 0.00
Abstract:
PURPOSE: A method for manufacturing a spherical positive active material is provided to solve environmental contamination according to the use of an organic solvent for a mechanical pulverizing method and a sol-gel method and to manufacturing the positive active material having excellent conductivity by adding carbon particles. CONSTITUTION: A method for a spherical positive active material for a secondary lithium battery comprises the following steps: manufacturing a mixed material including a lithium-based compound, transition metal, phosphate-based compound, and carbon source; making a mixed solution by uniformly dissolving the mixed material in ultrapure water; rapidly freezing the mixed solution; manufacturing a spherical precursor of high density by sublimating the frozen mixed solution; and heat-treating the spherical precursor of high density.