Abstract:
본 발명은 액체를 이용한 플렉서블 에너지 전환 장치에 관한 것으로, 보다 상세하게는 전기습윤(electrowetting)현상의 반대현상을 응용하여 기계적 에너지를 전기 에너지로 전환시키는 방법 및 장치에 관한 것으로 한쌍의 전극사이에서 액체와의 접촉면을 변화시키고, 그에 따른 액체와의 접촉면 변화를 전기에너지 생성에 활용하여, 채널 막힘현상이나 윤활층, 혹은 채널상에 복잡하게 패터닝된 전극들을 필요로 하지 않도록 하므로써 장치의 단순화, 제조원가 절감과 함께 고장이 적은 에너지 전환장치를 구현한다는 효과가 있다.
Abstract:
본 발명은 다층 전이금속 칼코겐화합물을 이용한 투명전자소, 이를 이용한 광전자 소자, 및 트랜지스터 소자에 관한 것으로서, 종래의 단층 전이금속 칼코겐화합물을 바람직하게는 3층 이상의 다층으로 구성하여 복수의 투명전극 사이에 채널층으로 형성한 발명에 관한 것이다. 이를 위해 투명 전도성 물질로 이루어진 복수의 전극, 그리고, 다층 전이금속 칼코겐 화합물(Transition Metal Dichalcogenides)에 의해 상기 복수의 전극 사이에 채널이 형성되는 채널영역을 포함하는 것을 특징으로 하는 다층 전이금속 칼코겐화합물을 이용한 투명전자소자가 개시된다.
Abstract:
The present invention relates to a device and an energy conversion method using the change of a contact angle and a contact area with liquid and more specifically, to a device and a method of converting mechanical energy to electrical energy by applying the opposite phenomenon of electrowetting phenomenon. The present invention places gas or liquid between two substrates that are opposite each other and prevents a channel clogging phenomenon by converting energy using the amount change of liquid. The energy conversion device has the advantage that it can simplify device constitution since it is unnecessary to pattern all electrodes opposing each other, easy to control and the insertion of an external power is not necessary.
Abstract:
PURPOSE: An inverter device using a thin film transistor and a manufacturing method thereof are provided to improve the reproducibility of electrical characteristics by inducing an electrical characteristic difference between two thin film transistors through a gate insulation layer with a first thickness and a second thickness. CONSTITUTION: A gate electrode (120) is deposited on a substrate (110). A gate insulating layer (130) is deposited on the gate electrode with a first thickness. A semiconductor layer (140) is deposited on the gate insulation layer with the first thickness. A source electrode (152) and a drain electrode (154) are deposited on the semiconductor layer. The gate insulation layer is deposited on a gate electrode (120') with a second thickness. The first thickness is different from the second thickness. A semiconductor layer (140') is deposited on the gate insulation layer with the second thickness.
Abstract:
PURPOSE: A nanoparticle-containing anisotropy light transmission material is provided to reduce light loss out of a light transfer material by forming a clad layer having a low refractivity or high reflectivity. CONSTITUTION: A nanoparticle-containing anisotropy light transmission material (10) has at least one of nanofluorescent materials converting the wavelength and nanoquantum dots dispersed in the anisotropy light transmission material. The body has a fibrous form. One of the nanofluorescent materials and the nanoquantum dots are mixed and dispersed in a transparent polymer resin. The diameters of the nanofluorescent materials and nanoquantum dots are smaller than 100 nm. The nanoparticle-containing anisotropy light transmission material additionally includes a clad layer which is coated to surround the body. The clad layer is formed of a material which is smaller than the body.
Abstract:
PURPOSE: A transparent optical multilayer and a transparent photovoltaic cell having the same are provided to achieve conductivity which is similar to that of metal and optically transparent by forming a transparent cathode. CONSTITUTION: An anode(120) is formed on a substrate(110). A photoactive layer(130) is formed on the anode. A metal buffer layer(140) is formed on the photoactive layer. A first electrode layer(150) is formed on the metal buffer layer. A second electrode layer(160) is formed on the first electrode layer.
Abstract:
PURPOSE: A method for forming a nano pattern is provided to reduce manufacturing costs and time by simply forming nano sized patterns with an imprint lithography method. CONSTITUTION: A first mask layer is formed on a base(S1). The first mask is firstly removed(S4). The base is firstly etched(S5). A second mask layer is formed on the base(S7). The second mask layer is firstly removed and the first mask layer is secondly removed(S8-S9). The base is secondly removed(S10). The second mask layer is secondly removed(S11).