Abstract:
본 발명에 따른 금속 나노입자 및 이의 제조방법은 탄수화물과 폴리카복실산을 폼 형성제로 사용함으로서, 충분한 부피를 가지는 폼 형태인 금속 함유 고분자 폼을 형성한다. 상기 고분자 폼에 의해 금속 성분들이 충분한 거리를 두고 분산되기 때문에 소성시 소결이 억제되어, 제조된 금속산화물 입자는 입자크기가 나노스케일로 작으며, 성분들이 균일하게 분산되어 있다. 따라서, 상기 금속 나노입자가 촉매인 경우 그 활성이 우수하며, 본 발명의 제조방법에 따라 제조된 촉매를 천연가스 개질반응에 사용하는 경우 높은 촉매 활성 및 내코크성을 가진다.
Abstract:
본 발명은 수불용성 제1 금속 함유 지지체를 준비하는 제1단계; 제1 금속을 용해시킬 수 있는 제2 금속 함유 촉매 전구체 수용액을 준비하는 제2단계; 제2 금속 함유 촉매 전구체 수용액에 제1 금속 함유 지지체를 첨가하여, 제1 금속 함유 지지체 표면 중 제1 금속 이온이 용해되면서, 용해된 제1 금속 자리에 제2 금속 이온이 치환되는 제3단계; 수용액에 용해되어 나온 제1 금속 이온을 제거하는 제4단계; 및 전 단계 생성물을 건조 및 소성하는 제5단계를 포함하여, 제2 금속 함유 촉매 성분이 지지체 표면 상에 코팅된 촉매를 제조하는 방법을 제공한다. 본 발명에 따라 제조된 촉매는 촉매성분이 촉매 증진제와 긴밀히 접촉하기 때문에 촉매의 분산도가 뛰어나고 증진제와 효과적으로 결합할 수 있어 촉매 특성이 뛰어나며, 특히 이 촉매는 탄화수소의 개질에 의해 합성가스를 제조하는 반응에 효과적이다. 또한, 우수한 내 코크성을 갖는다.
Abstract:
The present invention relates to a method for preparing a porous tin-carbon-silica composite. A composite with a form in which tin material is contained in a carbon-silica supporter is synthesized with one-pot by self-assembling block copolymers and a precursor. The synthesized tin-carbon-silica composite has high volume and stability when being applied as a cathode material for a lithium-ion battery. Provided is a method for preparing a composite in which metal is dispersed on the carbon-silica supporter, comprising a step of self-assembling a precursor mixture including a metal precursor, a carbon precursor and a silica precursor; a block copolymer including a block with which the metal precursor is combined and a block with which the carbon precursor and the silica precursor are combined; and a mixture containing solvents.
Abstract:
The present invention relates to a catalyst for fischer tropsch synthesis containing mesoporous carbon materials in a regular structure of which an average diameter of mesopores is nanoscale; and metal-containing catalyst particles of which an average inner size of the mesoporous carbon materials is nanoscale. The catalyst for fischer tropsch synthesis features that a cross sectional area of the metal-containing catalyst particles inside mesopore takes 85-95% of a cross sectional area of the mesopore when the metal-containing catalyst particles are metallic oxides, and a cross sectional area of the metal-containing catalyst particles inside mesopore takes 65-95% of a cross sectional area of the mesopore when the metal-containing catalyst particles are reduced metals. The catalyst for fischer tropsch synthesis according to the present invention improves productivity in synthesizing reaction of fischer tropsch manufacturing synthetic oil from synthetic gas as utilization of the catalyst becomes maximized because nanosize metal catalyst particles are supported with high dispersivity in mesoporous carbon materials, which are supporters, and natural performance of the catalyst is manifested to the fullest because interaction with the supporters becomes minimized.
Abstract:
PURPOSE: A regenerating method of a catalyst for the Fischer-Tropsch synthesis is provided to have an effect of not requiring a separate reduction facility to a reactor as the catalyst activation is possible at the same condition as the Fischer-Tropsch synthesis reaction condition. CONSTITUTION: A regenerating method of a catalyst for the Fischer-Tropsch synthesis comprises step a of forming metallic carbide by processing a catalyst for the Fischer-Tropsch synthesis, of which activation is lowered by performing the Fischer-Tropsch synthesis reaction, with gas including carbon monoxide; and step b of reducing the metallic carbide into a metal by processing the catalyst for the Fischer-Tropsch synthesis, which is a product in step a, with gas including hydrogen. A manufacturing method of liquid or solid hydrocarbon by using the Fischer-Tropsch synthesis reaction comprises step a of forming metallic carbide by processing a catalyst for the Fischer-Tropsch synthesis, of which activation is lowered by performing the Fischer-Tropsch synthesis reaction, with gas including carbon monoxide; step b of reducing the metallic carbide into a metal by processing the catalyst for the Fischer-Tropsch synthesis, which is a product in step a, with gas including hydrogen to regenerate the catalyst for the Fischer-Tropsch synthesis; and step c of performing the Fischer-Tropsch synthesis reaction by using the regenerated catalyst.