Abstract:
Provided are two-part shimming adhesives comprising a base part and a hardener part that are curable upon mixing. The base part includes a multifunctional epoxy resin having an epoxide functionality of at least three, a difunctional epoxy resin miscibly blended with the multifunctional epoxy resin. The hardener part includes a polyetheramine. Either the base part or hardener part further comprises an inorganic filler present in an amount from 10 percent to 60 percent, relative to the overall weight of the two-part curable shimming adhesive, and a phosphoric acid ester. The shimming adhesive enables joints to be assembled in one step, providing a significant advantage to the user.
Abstract:
A curable composition comprises: 1 to 65 percent by weight of polyepoxide comprising an addition reaction product of phenolphthalein and bisphenol A diglycidyl ether; 5 to 50 percent by weight of liquid polyepoxide; and an effective amount of curative for curing the curable composition. A curable adhesive film comprising the curable composition, and method of bonding are also disclosed.
Abstract:
The present disclosure provides a curable composition. The curable composition includes a liquid epoxy resin component a curative component, and a curable resin filler component. At least a portion of curable resin filler is dispersed in the liquid epoxy resin and solid at about 25° C. According to various examples, the curable composition can produce a film having good tackiness and improved handling characteristics. Additionally, according to some examples, a cured product of the curable composition can have a Wet Glass Transition Temperature and a Dry Glass Transition Temperature that are substantially the same.
Abstract:
Structural adhesive films are presented which comprise branched or networked polymers which are the reaction product of one or more polyether sulfone polymers, which may include amine-terminated polyether sulfone polymers and/or hydroxy-terminated polyether sulfone polymers, with epoxy-functional chemical species including the reaction product of one or more first polyepoxides with an amine-terminated branched polytetrahydrofuran polymer. The structural adhesive films may possess high strength, holding power and durability in high-temperature applications.
Abstract:
A sound and heat insulating blanket is presented comprising: a) a first layer of fabric comprising first fibers; and b) a first sound barrier film comprising a first rubber; wherein the first layer of fabric and first sound barrier film are bound together through a first interpenetrated binding layer wherein the first rubber of the first sound barrier film is interpenetrated by the first fibers of the first layer of fabric; and optionally c) a second layer of fabric comprising second fibers; wherein the second layer of fabric and first sound barrier film are bound together through a second interpenetrated binding layer wherein the first cured composition of the first sound barrier film is interpenetrated by the second fibers of the second layer of fabric. Typically, the sound and heat insulating blanket comprises no adhesive binding the first and second layers of fabric and the sound barrier film.
Abstract:
A two-part adhesive is provided comprising: A) a curative part comprising: i) an epoxy curative; and ii) a reaction intermediate which is the reaction product of a suspension of core/shell rubber nanoparticles in a liquid epoxy resin and an excess of the epoxy curative; wherein the curative part comprises greater than 1.1 wt % core/shell rubber nanoparticles; and B) an epoxy part comprising: iii) a liquid epoxy resin; and iv) greater than 9.1 wt % core/shell rubber nanoparticles. In some embodiments, the epoxy part additionally comprises greater than 5.1 wt % solid epoxy resin, such as, e.g., triglycidyl ether of trisphenol-methane. In some embodiments, the sum of the wt % solid epoxy resin and the wt % core/shell rubber nanoparticles in the epoxy part is greater than 41.0%. In some embodiments, the sum of the wt % solid epoxy resin and the wt % core/shell rubber nanoparticles in the mixed adhesive is greater than 26.0%.
Abstract:
A curable composition is provided comprising a curable rubber comprising: a ) 80.0-99.9 wt % of a chloroprene resin; b) 0.06-13 wt % of trimethyl thiourea; and c) 0.06-13 wt % of a benzothiazolesulfenamide, such as N-cyclohexyl-2-benzothiazoles-ulfenamide. The present disclosure additionally provides cured compositions comprising a rubber comprising a crosslinked chloroprene resin and a fire retardant particle system comprising: d) 5-95 wt % particulate magnesium hydroxide (Mg(OH)2); and e) 5-95 wt % particulate aluminum trihydrate (Al(OH)3). In some embodiments the particulate aluminum trihydrate (Al(OH)3) has a mean particle size of greater than 30 microns and less than 400 microns, and more typically a mean particle size of greater than 82 microns. The present disclosure additionally provides sound barrier films comprising the cured compositions according to the present disclosure, in particular fire resistant sound barrier films.
Abstract:
The invention provides a B-stageable adhesive composition, based on the total weight of the adhesive composition, comprising: 13-59 wt % of an epoxy resin; 18-69 wt % of a carboxyl terminated butadiene-acrylonitrile copolymer; and 3-34 wt % of a polyterpene modified phenol-formaldehyde resin. Additionally, the B-stageable adhesive composition may further comprise a hardener, an inorganic filler including a flame retardant agent, a thermal conductive filler or the like. According to the disclosure of the application, a new B-stageable adhesive composition having a high tackiness, a high temperature resistance, a high flame resistance and a high thermal conductivity can be provided.
Abstract:
(Meth)acrylates are prepared in a single-step method from a mixture of (meth)acrylic acid and at least one biobased oil and/or its derivative(s), including at least one unsaturation. The (meth)acrylates are made by directly adding the (meth)acrylic acid to the biobased oil by reacting in the presence of an acid catalyst, including an inorganic or organic acid having at least one oxygen atom present thereon and which possesses at least one acid functionality having an ionization constant in water which is not greater than 3.