Abstract:
A method of forming a working mold including: placing a substrate (610) on an electrode in a chamber, the substrate having at least a first structured surface (620) and the substrate including a thermoset polymeric material; introducing a release (630) layer forming gas into the chamber, wherein the release layer forming gas includes silicon containing gas and oxygen gas in an atomic ratio of not greater than about 200; providing power to the electrode to create a plasma of the release layer forming gas within the chamber; and depositing a release layer formed from the release layer forming gas on at least the first structured surface of the substrate to form a working mold.
Abstract:
Lightguides, devices incorporating lightguides, processes for making lightguides, and tools used to make lightguides are described. A lightguide includes light extractors arranged in a plurality of regions on a surface of the lightguide. The orientation of light extractors in each region is arranged to enhance uniformity and brightness across a surface of the lightguide and to provide enhanced defect hiding. The efficiency of the light extractors is controlled by the angle of a given light extractor face with respect to a light source illuminating the light guide.
Abstract:
A method of forming a working mold including: placing a substrate (610) on an electrode in a chamber, the substrate having at least a first structured surface (620) and the substrate including a thermoset polymeric material; introducing a release (630) layer forming gas into the chamber, wherein the release layer forming gas includes silicon containing gas and oxygen gas in an atomic ratio of not greater than about 200; providing power to the electrode to create a plasma of the release layer forming gas within the chamber; and depositing a release layer formed from the release layer forming gas on at least the first structured surface of the substrate to form a working mold.
Abstract:
A flexible circuit comprising a liquid crystal polymer film having through-holes and related shaped voids formed therein using an etchant composition comprising a solution in water of from 35 wt. % to 55 wt. % of an alkali metal salt; and from 10 wt. % to 35 wt. % of a solubilizer dissolved in the solution to provide the etchant composition suitable for etching the liquid crystal polymer at a temperature from 50 °C to 120 °C.
Abstract:
Method of fabricating an optical element. A photodefinable composition is provided that includes (i) a hydrophobic, photodefinable polymer, said photodefinable polymer having a glass transition temperature in the cured state of at least about 80 °C; and (ii) a multiphoton photoinitiator system comprising at least one multiphoton photosensitizer and preferably at least one phtoinitiator that is capable of being photosensitized by the phtosensitizer. One or more portions of the composition are imagewise exposed to the electromagnetic energy under conditions effective to photodefinably form at least a portion of a three-dimensional optical element.