Abstract:
Methods and apparatus for adaptively adjusting temporal parameters (e.g., neighbor cell search durations). In one embodiment, neighbor cell search durations during discontinuous reception are based on a physical channel metric indicating signal strength and quality (e.g. Reference Signal Received Power (RSRP), Received Signal Strength Indication (RSSI), Reference Signal Receive Quality (RSRQ), etc.) of a cell. In a second embodiment, neighbor cell search durations are based on a multitude of physical layer metrics from one or more cells. In one variant, the multitude of physical layer metrics may include signal strength and quality metrics from the serving base station as well as signal strength and quality indicators from neighbor cells derived from the cells respective synchronization sequences.
Abstract:
Methods and apparatus for managing radio measurements during discontinuous reception. In one exemplary embodiment, the distribution of Long Term Evolution (LTE) DRX measurements is staggered or distributed across multiple DRX cycles (which may be contiguous or non-contiguous) so as to reduce the transceiver activity and power consumption. The exemplary UE in one implementation only performs a subset of measurements during each DRX cycle. By staggering or distributing cell measurements over multiple DRX cycles, the UE can improve power consumption, while still conforming to measurement requirements.
Abstract:
Systems and methods that enhance radio link performance in a multi-carrier environment. A method may be performed by a UE that includes scanning a plurality of carrier components for a primary cell, determining a first bandwidth of the primary cell, scanning for a secondary cell, determining a second bandwidth of the secondary cell, determining a maximum aggregated bandwidth by combining the first bandwidth and the second bandwidth and when the maximum aggregated bandwidth exceeds a bandwidth capability of the UE, performing a cell selection procedure to select one of the primary cell or the secondary cell based on a higher of the first bandwidth and the second bandwidth.
Abstract:
Methods, apparatuses and computer-readable media are described that configure wireless circuitry of a wireless device. The wireless device establishes a connection to a first wireless network using first and second receiving signaling chains. The wireless device obtains a configuration processing delay time for the first wireless network and sends a first channel status report having a rank indicator value of one before starting a tune-away event at a time based on the obtained configuration processing delay time. The wireless device reconfigures at least one of the radio frequency signaling chains to receive signals from a second wireless network during the tune-away event. The wireless device subsequently sends a second channel status report having a rank indicator value greater than one before ending the tune-away event and reconfiguring the at least one of the radio frequency receive signaling chains back to the first wireless network.
Abstract:
A method for determining whether an acknowledgement received by a user equipment from an external device is a forced acknowledgement. The method including transmitting a set of data stored in an uplink buffer to an external device, receiving an acknowledgement from the external device, determining if the acknowledgement received from the external device was a forced acknowledgement and flushing out an uplink buffer if determined that the acknowledgement was not a forced acknowledgement. The determining the acknowledgement is a forced acknowledgment being based on whether an uplink retransmission collides with one or more scheduled transmission times, a Physical Hybrid-ARQ Indicator Channel (PHICH) falls between gap measurements and an uplink retransmission collides with one of the gap measurements or a TTI bundling retransmission collides with a gap measurement. If the acknowledgement is not a forced acknowledgment, a set of data stored in the uplink buffer is retransmitted to the external device.
Abstract:
QoS based uplink data buffering while TTI bundling is enabled by a wireless user equipment (UE) device. The UE may establish a packet-switched connection with a network via a wireless link. The UE may receive, at a media access control (MAC) layer, an indication to enable TTI bundling. The UE may selectively buffer uplink data at an application layer based on the indication to enable TTI bundling. The uplink data may be buffered selectively based on Quality of Service (QoS) considerations. Uplink transmissions may subsequently be performed using TTI bundling.
Abstract:
Methods, apparatuses and computer readable media are described that configure wireless circuitry in a wireless communication device. The wireless communication device establishes a connection to a wireless network using wireless circuitry that includes a first radio frequency receive signal chain and a second radio frequency receive signal chain. The wireless communication device monitors uplink and downlink traffic activity communicated between the wireless communication device and the wireless network and measures downlink radio frequency receive signal conditions at the wireless communication device. The wireless communication device reconfigures the wireless circuitry to enable receive diversity or to disable receive diversity at the wireless communication device based on the monitored traffic activity and the measured downlink radio frequency receive signal conditions.
Abstract:
Performing cell re-selection by a wireless user equipment (UE) device. A first cell on which to camp may be selected. The UE may camp on the first cell in an idle-mode. The UE may be configured to perform searches for neighboring cells according to an idle-mode timeline while camping on the first cell. The UE may transmit a connection request to the first cell in order to transition the UE from the idle-mode to a connected-mode via the first cell. One or more searches for neighboring cells may be performed according to a connected-mode timeline after transmitting the connection request, in response to transmitting the connection request. The one or more searches may be performed before the UE establishes the connected-mode with the first cell.
Abstract:
Methods and apparatus for adjusting adaptive control loop behavior based on, for example measured artifacts of the radio environment. In one embodiment, a Long Term Evolution (LTE) user equipment (UE) adjusts one or more Automatic Gain Control (AGC) loops based on a measured Doppler spread of received signals. Specifically, one or more AGC parameters (e.g., set-point, loop gain, etc.) are selected based on a measured Doppler spread. The one or more AGC parameters are configured to optimize both the AGC headroom (e.g., dynamic range) and the signal to quantization plus noise ratio (SQNR) of the receiver under dynamic wireless fading channels for the detected Doppler.
Abstract:
Providing adaptive channel state feedback (CSF) reports in discontinuous reception (DRX) scenarios in a power-efficient manner. The described algorithm may be able to make adaptive decisions to carry over the CSF from previous DRX cycles based on a comparison between an offset at which CSF values are stable and an offset at which a CSF report is to be sent to a base station. If the CSF values are not stable by the time the CSF report is to be sent, a CSF report from a prior DRX cycle may be used. Alternatively, if the CSF value are stable by the time the CSF report is to be sent, a determination may be made to either generate a new CSF report or use a prior CSF report. The latter determination may be made based on various criteria, including channel conditions and DRX cycle length.