Abstract:
An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
Abstract:
Systems, methods, and computer-readable media for enabling position determination of a stylus with receive architecture are provided. The stylus can comprise: a plurality of electrodes; a plurality of sensing circuits coupled to the plurality of electrodes, the plurality of sensing circuits configured to sense receive signals on the plurality of electrodes in response to stimulation signals from a touch sensor panel of an electronic device in communication with the stylus; and a processor coupled to the plurality of sensing circuits, the processor configured to: correlate the receive signals sensed by the plurality of electrodes with a first set of codes to generate correlation data; and transmit data including the correlation data or generated using the correlation data to the electronic device in communication with the stylus.
Abstract:
Touch sensor panels (or touch screens) can improve signal-to-noise ratio (SNR) using touch electrode patterns for differential drive and/or differential sense techniques. In some examples, a touch sensor panel can include a two-dimensional array of touch nodes formed from a plurality of touch electrodes. Each column (or row) of touch nodes can be driven with a plurality of drive signals. For example, a first column (or row) of touch nodes can be driven by a first drive signal applied to one or more first touch nodes in the first column (or row) and a second drive signal applied to a one or more second touch nodes of the first column (or row). In some examples, the first drive signal and the second drive signal can be complimentary drive signals. In some examples, each row (or column) of touch electrodes can be sensed by differential sense circuitry.
Abstract:
An input device such as a stylus for providing input to a touch-sensitive surface with reduced sensitivity to leakage current variations over temperature is disclosed. A passive stylus may include one or more diodes in parallel with one or more bleed resistors. The non-linear load of the diode and resistor network can be operative to provide a stylus electric field in response to a stimulation signal from an electronic device that can be capacitively coupled to, and sensed by, the electronic device. The signal sensed by the electronic device can be a function of the total leakage current, which can vary greatly as a function of temperature and frequency. In order to improve performance, the diode and resistor network, including the bleed resistor(s) and diodes within that network, can be selected and/or designed to provide a reduced variation in the leakage current and more accurate stylus detection.
Abstract:
In some examples, an input device includes a non-linear component, such as a diode. In response to a drive signal, such as a sinusoidal wave, the non-linear passive input device can produce a non-linear output that includes frequency content at the second and other higher harmonics of the fundamental frequency of the drive signal, for example. In some examples, drive electrodes can be driven with a drive signal having one of two fundamental frequencies such that the frequency of the drive signals are applied in an alternating pattern. The electronic device can sense the signal of the stylus to determine the coarse location of the stylus along the sense electrodes and, based on the frequency content of the received signal, a fine location along the axis of the drive electrodes.
Abstract:
Disclosed herein are electronic devices having a deformable surfaces through which a user can provide inputs to the device by applying a force such as a pinch or a squeeze. A particular embodiment is an earpiece with the deformable surface part of an elongate section extending from an earbud. The deformable surface includes an incompressible hyperelastic material and a pressure sensor. The pressure sensor includes a pressure sensing element and a void defined between the pressure sensing element and the incompressible hyperelastic material. An applied force is transferred by the incompressible hyperelastic material to compress the void and change an internal pressure thereof. The changed pressure is detected by the pressure sensor, and can result in changed operation of the electronic device.
Abstract:
Structures and methods are disclosed for an electronic device having an input surface that uses dual sensors to measure forces applied to the input surface. The forces can be estimated over a greater range of values than would be possible with either sensor alone. A second sensor can be used after a first sensor has reached a limit. A first sensor can be a strain sensor and a second sensor a pressure sensor. Both sensors may be resistance based, with signals from both sensors can be combined and measured by processing circuitry. Each sensor type may be part of planar arrays disposed beneath the input surface.
Abstract:
Structures and methods are disclosed for an electronic device having an input surface that uses dual sensors to measure forces applied to the input surface. The forces can be estimated over a greater range of values than would be possible with either sensor alone. A second sensor can be used after a first sensor has reached a limit. A first sensor can be a strain sensor and a second sensor a pressure sensor. Both sensors may be resistance based, with signals from both sensors can be combined and measured by processing circuitry. Each sensor type may be part of planar arrays disposed beneath the input surface.
Abstract:
One or more strain sensors can be included in an electronic device. Each strain sensor includes a strain sensitive element and one or more strain signal lines connected directly to the strain sensitive element. The strain sensor(s) are used to detect a force that is applied to the electronic device, to a component in the electronic device, and/or to an input region or surface of the electronic device. A strain sensitive element is formed or processed to have a first gauge factor and the strain signal line(s) is formed or processed to have a different second gauge factor. Additionally or alternatively, a strain sensitive element is formed or processed to have a first conductance and the strain signal line(s) is formed or processed to have a different second conductance.
Abstract:
A strain-sensitive structure includes two resistive structures connected in series and formed on one surface of a substrate. One resistive structure is formed with a first trace arranged in first trace pattern. The other resistive structure is formed with a second trace arranged in a second trace pattern. The first resistive structure is configured to experience strain in response to an applied stress on the substrate. The second resistive structure is configured to experience less strain in response to the applied stress on the substrate compared to the first resistive structure. Together the strain-sensitive structure and the substrate form a force sensing layer that can be included in an electronic device.