Abstract:
ABSTRACT Systems and methods for validating and applying modifications to a policy control function (PCF) of a station. The methods include generating a PCF package including a modification to a PCF, and determining whether the PCF package is to be transmitted to the station by a first or second entity. The methods further include when the PCF package is to be transmitted by the first entity, including a first signature of the first entity in a deliverer field of the PCF package, and when the PCF package is to be transmitted by the second entity, including the first signature in an owner field and a second signature of the second entity in the deliverer field. The methods further include receiving the PCF package from the first or second entity, determining whether the PCF package is valid, and applying the modification when it is determined the PCF package is valid.
Abstract:
Disclosed herein are different techniques for enabling a mobile device to dynamically support different authentication algorithms. A first technique involves configuring an eUICC included in the mobile device to implement various authentication algorithms that are utilized by MNOs (e.g., MNOs with which the mobile device can interact). Specifically, this technique involves the eUICC storing executable code for each of the various authentication algorithms. According to this technique, the eUICC is configured to manage at least one eSIM, where the eSIM includes (i) an identifier that corresponds to one of the various authentication algorithms implemented by the eUICC, and (ii) authentication parameters that are compatible with the authentication algorithm. A second technique involves configuring the eUICC to interface with an eSIM to extract (i) executable code for an authentication algorithm used by an MNO that corresponds to the eSIM, and (ii) authentication parameters that are compatible with the authentication algorithm.
Abstract:
A policy-based framework is described. This policy-based framework may be used to specify the privileges for logical entities to perform operations associated with an access-control element (such as an electronic Subscriber Identity Module) located within a secure element in an electronic device. Note that different logical entities may have different privileges for different operations associated with the same or different access-control elements. Moreover, the policy-based framework may specify types of credentials that are used by the logical entities during authentication, so that different types of credentials may be used for different operations and/or by different logical entities. Furthermore, the policy-based framework may specify the security protocols and security levels that are used by the logical entities during authentication, so that different security protocols and security levels may be used for different operations and/or by different logical entities.
Abstract:
Methods and apparatus for large scale distribution of electronic access control clients. In one aspect, a tiered security software protocol is disclosed. In one exemplary embodiment, a server electronic Universal Integrated Circuit Card (eUICC) and client eUICC software comprise a so-called ''stack'' of software layers. Each software layer is responsible for a set of hierarchical functions which are negotiated with its corresponding peer software layer. The tiered security software protocol is configured for large scale distribution of electronic Subscriber Identity Modules (eSIMs).
Abstract:
Methods and apparatus for correcting error events associated with identity provisioning. In one embodiment, repeated requests for access control clients are responded to with the execution of a provisioning feedback mechanism which is intended to prevent the unintentional (or even intentional) over-consumption or waste of network resources via the delivery of an excessive amount of access control clients. These provisioning feedback mechanisms include rate-limiting algorithms and/or methodologies which place a cost on the user. Apparatus for implementing the aforementioned provisioning feedback mechanisms are also disclosed and include specialized user equipment and/or network side equipment such as a subscriber identity module provisioning server (SPS).
Abstract:
Methods and apparatus for detecting fraudulent device operation. In one exemplary embodiment of the present disclosure, a device is issued a user access control client that is uniquely associated with a shared secret that is securely stored within the network and the access control client. Subsequent efforts to activate or deactivate the access control client require verification of the shared secret. Each change in state includes a change to the shared secret. Consequently, requests for a change to state which do not have the proper shared secret will be disregarded, and/or flagged as fraudulent.
Abstract:
This Application sets forth techniques for managing subscriber identity module (SIM) toolkit (STK) scheduling for multiple enabled electronic subscriber identity module (eSIM) profiles on an embedded universal integrated circuit card (eUICC) of a wireless device, including managing multiple STK sessions at a baseband processor external to the eUICC of the wireless device. To forestall STK communication for different eSIMs from interfering with execution of processes associated with the eSIMs, a baseband processor can schedule STK sessions to avoid overlap and reduce opportunities for errors in handling eSIM processes. The baseband processor can prioritize whether to queue commands for a second STK session for a second eSIM until a first STK session for a first eSIM ends or to terminate the first STK session to handle the second STK session.
Abstract:
Methods and apparatus enabling programming of electronic identification information of a wireless apparatus (500). In one embodiment, a previously purchased or deployed wireless apparatus (500) is activated by a cellular network. The wireless apparatus (500) connects to the cellular network using an access module to download operating system components and/or access control client components. The described methods and apparatus enable updates, additions and replacement of various components including Electronic Subscriber Identity Module (eSIM) data, OS components. One exemplary implementation of the invention utilizes a trusted key exchange between the device and the cellular network to maintain security.
Abstract:
Methods for provisioning electronic Subscriber Identity Modules (eSIMs) to electronic Universal Integrated Circuit Cards (eUICCs) are provided. One method involves a provisioning server (102) configured to encrypt (416) the eSIM with a symmetric key (Ke). The provisioning server, upon identifying a target eUICC (120), encrypts (434) the symmetric key with a key encryption key (KEK) derived (428) based at least in part on a private key associated with the provisioning server and a public key associated with the target eUICC. The provisioning server generates (636) an eSIM package including the encrypted eSIM, the encrypted symmetric key, a public key corresponding to the private key associated with the provisioning server, as well as additional information that enables the target eUICC to, upon receipt of the eSIM package, identify (641) a private key that corresponds to the public key associated with the target eUICC and used to derive the KEK.