Abstract:
The invention relates to a method for performing endothermic process, characterized in that the annual average total energy required for the endothermic process originates from at least two different energy sources. One of the energy sources is an electrical energy source, the power of which varies between 0 and 100% of the required total power, and three different energy modes individually can provide the total required power for the endothermic process: (i) exclusively electrical energy, (ii) a mixture of electrical energy and at least one additional non-energy source, or (iii) exclusively non-electrical energy. The transition time in which the change from one energy mode to another energy mode is completed 30 minutes at most.
Abstract:
The present invention relates to a ferrous zeolite, wherein the number of iron centers, relative to the zeolite, is greater than the number of cation positions of the zeolite. The present invention further relates to a ferrous zeolite that can be produced by gas phase reaction with iron pentacarbonyl, comprising a greater specific surface area than analogous ferrous zeolites produced by ion exchange and/or more hydrothermally stable than analogous ferrous zeolites produced by ion exchange. The present invention further relates to a ferrous zeolite of BETA structure that can be produced by gas phase reaction with iron pentacarbonyl, wherein the number of iron clusters greater than 10 nm is less than 15 wt%, relative to the total amount of iron. The present invention further relates to a method for producing ferrous zeolithic material, characterized in that doping with iron takes place by means of a gas phase reaction using iron pentacarbonyl. The present invention further relates to a method for catalytically reducing nitrogen oxides by adding ammoniac and using catalysts comprising said ferrous zeolithic material.