Abstract:
A method and system to differentiate a tissue margins during various medical procedures. A region containing a biological tissue is irradiated, with a substantially monochromatic light. Raman spectroscopic data is obtained from the irradiated region. A boundary between a neoplastic portion and a non-neoplastic portion, in the region containing the biological tissue, is differentiated by evaluating the Raman spectroscopic data for at least one Raman spectroscopic value characteristic of either the neoplastic portion or the non-neoplastic portion. The neoplastic portion is selected for physical manipulation based on the differentiation of the boundary between the neoplastic portion and the non-neoplastic portion.
Abstract:
A method and system of differentially manipulating cells where the cells, suspended in a fluid, are irradiated with substantially monochromatic light. A Raman data set is obtained from the irradiated cells and where the data set is characteristic of a disease status. The data set is assessed to identify diseased cells. A Raman chemical image of the irradiated cells is also obtained. Based on the assessment and the Raman chemical image, the fluid in which the cells are suspended is differentially manipulated. The diseased cells are directed to a first location and other non-diseased cells are directed to a second location as part of the differential manipulation. The diseased cells may be treated with a physical stress, a chemical stress, and a iological stress and then returned to a patient from whom the diseased cells were obtained prior to the irradiation.
Abstract:
A system and method for analyzing biological samples, such as dried human blood serum, to determine a disease state such as colorectal cancer (CRC). Using dried samples may hold potential for enhancing localized concentration and/or segmentation of sample components. The method may comprise illuminating at least one location of a biological sample to generate a plurality of interacted photons, collecting the interacted photons and generating at least one Raman data set representative of the biological sample. A system may comprise an illumination source to illuminate at least one location of a biological sample and generate at least one plurality of interacted photons, at least one mirror for directing the interacted photons to a detector. The detector may be configured to generate at least one Raman data set representative of the biological sample. The system and method may utilize a FAST device for multipoint analysis or may be configured to analyze a sample using a line scanning configuration.