Abstract:
A method of laser drilling, forming a perforation, cutting, separating or otherwise processing a material includes focusing a pulsed laser beam into a laser beam focal line, and directing the laser beam focal line into a workpiece comprising a stack including at least: a first layer, facing the laser beam, the first layer being the material to be laser processed, a second layer comprising a carrier layer, and a laser beam disruption element located between the first and second layers, the laser beam focal line generating an induced absorption within the material of the first layer, the induced absorption producing a defect line along the laser beam focal line within the material of the first layer. The beam disruption element may be a beam disruption layer or a beam disruption interface.
Abstract:
A method of separating a transparent mother sheet includes contacting a first surface of the transparent mother sheet with an open ended pressure assembly including a pressure vessel shell, thereby forming a shell cavity defined by the first surface of the transparent mother sheet and the pressure vessel shell, where the transparent mother sheet comprises a damage path. The method also includes removing gas from the shell cavity through a fluid removal outlet extending through the pressure vessel shell to reduce a cavity pressure in the shell cavity, thereby applying stress to the damage path to separate a portion of the transparent mother sheet along the damage path.
Abstract:
A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength λ, an effective spot size wo,eff, and a non-axisymmetric beam cross section having a minimum Rayleigh range ZRx,min in an x-direction and a minimum Rayleigh range ZRy,min in a y-direction. Further, the smaller of ZRx,min and ZRy,min is greater than FDπw0,eff2/λ, where FD is a dimensionless divergence factor comprising a value of 10 or greater.
Abstract:
Methods are provided for laser processing arbitrary shapes of molded 3D thin transparent brittle parts from substrates with particular interest in substrates formed from strengthened or non-strengthened Corning Gorilla® glass (all codes). The developed laser methods can be tailored for manual separation of the parts from the panel or full laser separation by thermal stressing the desired profile. Methods can be used to form 3D surfaces with small radii of curvature. The method involves the utilization of an ultra-short pulse laser that may be optionally followed by a CO2 laser for fully automated separation.
Abstract:
Strengthened glass articles having laser etched features, electronic devices, and methods of fabricating etched features in strengthened glass articles are disclosed. In one embodiment, a strengthened glass article includes a first strengthened surface layer and a second strengthened surface layer under a compressive stress and extending from a first surface and a second surface, respectively, of the strengthened glass article to a depth of layer, and a central region between the first strengthened surface layer and the second strengthened surface layer that is under tensile stress. The strengthened glass article further includes at least one etched feature formed by laser ablation within the first surface or the second surface having a depth that is less than the depth of layer and a surface roughness that is greater than a surface roughness of the first surface or second surface outside of the at least one etched feature.
Abstract:
A method for laser processing a transparent workpiece includes forming a contour line that includes defects, by directing a pulsed laser beam output by a beam source through an aspheric optical element positioned offset in a radial direction from the beam pathway and into the transparent workpiece such that the portion of the pulsed laser beam directed into the transparent workpiece generates an induced absorption within the transparent workpiece that produces a defect within the transparent workpiece. The portion of the pulsed laser beam directed into the transparent workpiece includes a wavelength λ, an effective spot size wo,eff, and a non-axisymmetric beam cross section having a minimum Rayleigh range ZRx,min in an x-direction and a minimum Rayleigh range ZRy,min in a y-direction. Further, the smaller of ZRx,min and ZRy,min is greater than F D π w 0 , eff 2 λ , where FD is a dimensionless divergence factor comprising a value of 10 or greater.
Abstract:
Embodiments of the present method of laser cutting a laser wavelength transparent glass article comprises feeding at least one glass article to a pulsed laser assembly having at least one pulsed laser, wherein the pulsed laser defines a laser beam focal line with a length of 0.1-100 mm, the glass article being comprised of two end sections, and at least one lateral surface disposed lengthwise between the end sections. The method further comprises laser cutting at least one perforation line onto the lateral surface of the glass article while there is relative motion between the glass article and the pulsed laser and separating the glass article along the at least one perforation line to yield a laser cut glass article.
Abstract:
The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
Abstract:
The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
Abstract:
The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.