Abstract:
Systems and apparatus for ionic liquid catalyzed hydrocarbon conversion, such as alkylation, using vaporization to remove reaction heat from an ionic liquid reactor and to provide mixing therein, wherein hydrocarbon vapors are withdrawn from the ionic liquid reactor and the withdrawn hydrocarbon vapor is recovered by a hydrocarbon vapor recovery unit in fluid communication with the ionic liquid reactor for recycling condensed hydrocarbons to the ionic liquid reactor. Processes for ionic liquid catalyzed alkylation are also disclosed.
Abstract:
Systems and apparatus for ionic liquid catalyzed hydrocarbon conversion, such as alkylation, using vaporization to remove reaction heat from an ionic liquid reactor and to provide mixing therein, wherein hydrocarbon vapors are withdrawn from the ionic liquid reactor and the withdrawn hydrocarbon vapor is recovered by a hydrocarbon vapor recovery unit in fluid communication with the ionic liquid reactor for recycling condensed hydrocarbons to the ionic liquid reactor. Processes for ionic liquid catalyzed alkylation are also disclosed.
Abstract:
A process includes flowing a catalyst composition comprising catalyst particles into a radial flow moving bed reactor, wherein the catalyst particles move by gravity through the radial flow moving bed reactor to an exit point of the radial flow moving bed reactor, wherein the catalyst particles form a moving catalyst bed in the radial flow moving bed reactor, flowing a light hydrocarbon feed stream comprising C1 to C3 alkanes into the radial flow moving bed reactor in a manner so that the light hydrocarbon feed stream flows radially inward or radially outward through the moving catalyst bed and thereby contacts the catalyst particles under reaction conditions to produce a product effluent stream comprising a C2 to C10 hydrocarbon product and hydrogen, and flowing the product effluent stream from the radial flow moving bed reactor.
Abstract:
A process for producing high octane alkylate is provided. The process involves reacting isobutane and ethylene using an ionic liquid catalyst. Reaction conditions can be chosen to assist in attaining, or to optimize, desirable alkylate yields and/or properties.
Abstract:
An integrated system comprising: a. an additive delivery system comprising a transfer drum that feeds an immiscible liquid stream towards one or more injection quills; b. a solvent flushing system, comprising one or more additive addition lines that transfer the immiscible liquid stream from the additive delivery system; and c. an additive injection and mixing system comprising the one or more injection quills, wherein the immiscible liquid stream is injected into a larger liquid stream. Also, a process comprising: a. feeding the immiscible liquid stream to a transfer drum; b. transferring the immiscible liquid stream from the transfer drum to injection quills in a solvent flushing system, wherein the solvent flushing system injects a solvent into one or more additive addition lines in the solvent flushing system; and c. injecting the immiscible liquid stream into the larger liquid stream in an additive injection and mixing system comprising injection quills.
Abstract:
We provide a process for regenerating a spent acidic ionic liquid, comprising contacting the spent acidic ionic liquid with hydrogen and without an addition of a hydrogenation catalyst; wherein a conjunct polymer content is decreased in the spent acidic ionic liquid to produce regenerated acidic ionic liquid. We also provide a process for making an alkylate gasoline blending component, comprising: a) alkylating a mixture of isoparaffins and olefins using an acidic ionic liquid and an alkyl halide or a hydrogen halide, wherein a conjunct polymer accumulates in a spent acidic ionic liquid; and b) feeding the spent acidic ionic liquid and a hydrogen, and without an addition of a hydrogenation catalyst, to a regeneration reactor operated under selected hydrogenation conditions to produce a regenerated acidic ionic liquid that is used for the alkylating, wherein the conjunct polymer in the regenerated acidic ionic liquid is decreased by at least 50 wt %.
Abstract:
We provide a segmented reactor for regenerating a spent acidic ionic liquid via a hydrogenation reaction and hydrocracking, comprising: no solid hydrogenation catalyst; a gas inlet on one side for feeding a gas feed comprising a hydrogen; a liquid inlet on an opposite side for feeding a spent acidic ionic liquid; partitions along an axis of the reactor that create segments, wherein each segment functions as a bubble column reactor; and an outlet from which a regenerated acidic ionic liquid flows out of the segmented reactor.
Abstract:
We provide a process for regenerating a spent acidic ionic liquid, comprising contacting the spent acidic ionic liquid with hydrogen and without an addition of a hydrogenation catalyst; wherein a conjunct polymer content is decreased in the spent acidic ionic liquid to produce regenerated acidic ionic liquid. We also provide a process for making an alkylate gasoline blending component, comprising: a) alkylating a mixture of isoparaffins and olefins using an acidic ionic liquid and an alkyl halide or a hydrogen halide, wherein a conjunct polymer accumulates in a spent acidic ionic liquid; and b) feeding the spent acidic ionic liquid and a hydrogen, and without an addition of a hydrogenation catalyst, to a regeneration reactor operated under selected hydrogenation conditions to produce a regenerated acidic ionic liquid that is used for the alkylating, wherein the conjunct polymer in the regenerated acidic ionic liquid is decreased by at least 50 wt %.
Abstract:
We provide a process for regenerating a spent acidic ionic liquid, comprising contacting the spent acidic ionic liquid with hydrogen and without an addition of a hydrogenation catalyst; wherein a conjunct polymer content is decreased in the spent acidic ionic liquid to produce regenerated acidic ionic liquid. We also provide a process for making an alkylate gasoline blending component, comprising: a) alkylating a mixture of isoparaffins and olefins using an acidic ionic liquid and an alkyl halide or a hydrogen halide, wherein a conjunct polymer accumulates in a spent acidic ionic liquid; and b) feeding the spent acidic ionic liquid and a hydrogen, and without an addition of a hydrogenation catalyst, to a regeneration reactor operated under selected hydrogenation conditions to produce a regenerated acidic ionic liquid that is used for the alkylating, wherein the conjunct polymer in the regenerated acidic ionic liquid is decreased by at least 50 wt %.
Abstract:
Systems and apparatus for ionic liquid catalyzed hydrocarbon conversion, such as alkylation, using vaporization to remove reaction heat from an ionic liquid reactor and to provide mixing therein, wherein hydrocarbon vapors are withdrawn from the ionic liquid reactor and the withdrawn hydrocarbon vapor is recovered by a hydrocarbon vapor recovery unit in fluid communication with the ionic liquid reactor for recycling condensed hydrocarbons to the ionic liquid reactor. Processes for ionic liquid catalyzed alkylation are also disclosed.