Abstract:
There is provided an X-ray imaging apparatus which images a specimen. The X-ray imaging apparatus comprises: an X-ray source; a diffraction grating configured to diffract an X-ray from the X-ray source; an X-ray detector configured to detect the X-ray diffracted by the diffraction grating; and a calculator configured to calculate phase information of the specimen on the basis of an intensity distribution of the X-ray detected by the X-ray detector, wherein the calculator obtains a spatial frequency spectrum from the plural intensity distributions, and calculates the phase information from the obtained spatial frequency spectrum.
Abstract:
An X-ray imaging apparatus which takes an image of an object to be detected, comprises: a first grating to form a periodic bright-dark pattern by a Talbot effect, based on an X-ray from an X-ray source; a second grating, disposed at a position where the bright-dark pattern is formed, to block a part of the bright-dark pattern; a detector to detect an X-ray intensity distribution of the X-ray which passed through the second grating; and a calculator to calculate phase information of the X-ray based on the detected X-ray intensity distribution, wherein the second grating includes a first region having a first blocking pattern and a second region having a second blocking pattern, and a direction in which the first blocking pattern blocks a bright section of the bright-dark pattern is different from a direction in which the second blocking pattern blocks the bright section of the bright-dark pattern.
Abstract:
There is provided an X-ray imaging apparatus which images a specimen. The X-ray imaging apparatus comprises: an X-ray source; a diffraction grating configured to diffract an X-ray from the X-ray source; an X-ray detector configured to detect the X-ray diffracted by the diffraction grating; and a calculator configured to calculate phase information of the specimen on the basis of an intensity distribution of the X-ray detected by the X-ray detector, wherein the calculator obtains a spatial frequency spectrum from the plural intensity distributions, and calculates the phase information from the obtained spatial frequency spectrum.
Abstract:
A measurement apparatus includes a first mask that is arranged on an object plane of a target optical system, and has a window that transmits measurement light, a second mask that has a reflection surface for reducing coherence of the measurement light, and a diffraction grating configured to split the measurement light that has been reflected on the second mask, has passed the first mask and the target optical system, wherein a distance Lg between the diffraction grating and an image plane of the target optical system satisfies Lg=m·Pg2/λ where Pg is a grating pitch of the diffraction grating, λ is a wavelength of the measurement light, and m is an integer except for 0.
Abstract:
A wavefront-aberration-measuring device measures wavefront aberration of a to-be-tested optical system and includes a diffraction grating that splits light transmitted through the optical system, a detecting unit that detects interference fringes produced by beams of the split light, an arithmetic unit that calculates the wavefront aberration from the detected interference fringes, an image-side mask insertable into and retractable from an image plane of the optical system, and an illuminating unit that incoherently illuminates the image-side mask. The image-side mask has an aperture with a diameter larger than λ/2NA, where λ denotes a wavelength of the illuminating unit and NA denotes a numerical aperture of the to-be-tested optical system. The arithmetic unit calculates the wavefront aberration of the optical system from the interference fringes detected with the image-side mask being retracted from the image plane and the interference fringes detected with the image-side mask being in the image plane.
Abstract:
An exposure apparatus includes an illumination optical system. The illumination optical system includes a first member configured to define an illuminated region of a reflective mask having a pattern to be projected onto a substrate; a second member configured to define an illuminated region in which a measurement pattern used in measuring wavefront aberration of a projection optical system is illuminated, the second member being able to be inserted into and removed from an optical path of the illumination optical system; and a condensing mirror configured to condense light from the first member on the pattern to be projected onto the substrate and light from the second member on the measurement pattern. The illuminated region defined by the second member is smaller than the illuminated region defined by the first member.
Abstract:
A wavefront measuring device is disclosed which is capable of measuring an average wavefront and the retardation of a lens including birefringence. The measuring device includes a light source for emitting a linearly polarized light; a polarization orientation setting member for switching the polarization orientation of the light flux from the light source between at least two orientations; a light synthesizing member for synthesizing the light flux after passing the light fluxes through an object to be measured and a reference surface; an analyzer for switching the polarization orientation so as to pass only the same polarized component as the polarized light incident on the object to be measured; an image pickup member for detecting interference information of the light flux obtained through the analyzer; and a calculating section for calculating the average wavefront and/or the retardation of the object to be measured.
Abstract:
An apparatus for measuring the surface shape of the surface to be measured of an optical system to be measured includes a rotary stage holding the optical system to be measured thereon and rotatable about the optical axis of the optical system to be measured, a device for detecting the rotation azimuth of the rotary stage, an irradiating optical system for sequentially applying a coherent light beam to the plurality of measuring diameter positions of the surface to be measured of the optical system to be measured held on the rotary stage, a light receiving element for detecting the reflected light of the coherent light beam from the surface to be measured as an interference signal, and a calculating system for effecting the measurement of the surface shape of the surface to be measured on the basis of the result of the detection of the interference signal at each of the plurality of measuring diameter positions of the surface to be measured and the result of the detection by the rotation azimuth detecting device.
Abstract:
An exposure apparatus includes a first dispersing element for dispersing substantially parallel laser light, from a laser, with respect to the wavelength to provide light beams of wavelength units, a first optical system for collecting each light beam of a wavelength unit from the first dispersing element, a wavelength selecting device for passing a predetermined wavelength region of light, of the light beams of wavelength units each being collected by the first optical system, a second optical system for receiving the light from the wavelength selecting device and providing parallel light beams of wavelength units, and a second dispersing element for combining the parallel light beams of wavelength units from the second optical system, the second dispersing element having substantially the same angular dispersion as that of the first dispersing element and a direction of dispersion opposite to that of the first dispersing element.