Abstract:
Methods and devices of controlling impact from interference from transmission to a 4-branch Multiple Input Multiple Output, MIMO, enabled User Equipment, UE, in a cellular radio system where legacy non 4-branch MIMO UEs co-exist are provided. The control involves determining an estimated Channel Quality Indicator, CQI, delay, and based on the estimated CQI delay determining if there exists a CQI under-estimation or CQI over-estimation. The control of the impact from high rank interference from transmission to the 4-branch MIMO enabled UE is based on a determined CQI under-estimation or CQI over-estimation.
Abstract:
A method in a network node for multiplexing a physical channel between the network node and devices in a mixed wireless network, wherein the mixed wireless network comprises a cellular network comprising one or more cellular channels and a Device-to-Device (D2D) network comprising one or more D2D channels. The method includes time division multiplexing the physical channel between a first group of cellular channels and a first group of D2D channels, and frequency division multiplexing the physical channel between a second group of cellular channels and the first group of D2D channels.
Abstract:
The present disclosure discloses a pilot signal transmission method in a wireless communication system and an associated Transmit-Receive Point (TRP). The method comprises transmitting a periodic pilot signal for channel estimation from at least one TRP in the proximity of a User Equipment (UE) within a combined cell, when the UE is not scheduled for data transmission. The method further comprises transmitting a pilot signal for demodulation from the same TRP, when the UE is scheduled for data transmission. The transmission power of the periodic pilot signal for channel estimation is lower than that of the pilot signal for signal for channel demodulation. The present disclosure further provides a pilot signal reception method in a wireless communication network and an associated UE.
Abstract:
The present disclosure relates to a method of a first radio device in non-network assisted device-to-device (D2D) communication with a second radio device using a first frequency resource and a first communication protocol. The method comprises determining that the first radio device is within coverage of a cellular network. The method also comprises connecting to the cellular network. The method also comprises sending a message to the second radio device, informing said second radio device that the first radio device is within coverage of the cellular network. The method also comprises receiving a message from the cellular network comprising information about a second frequency resource and a second communication protocol. The method also comprises initiating a handover of the D2D communication from the first frequency resource and communication protocol to the second frequency resource and communication protocol.
Abstract:
A method, a user equipment, and a base station for link adaptation in a hybrid device-to-device device (D2D) and cellular network are provided. The method comprises receiving, by at least one of two D2D user equipment (UEs) in D2D communication, resource allocation information and assistance information from a base station (BS), wherein the assistance information is used to divide resources conveyed by the resource allocation information into different types based upon correspondingly different interference sources. The method further comprises performing respective link adaptation based upon the respective different types of resources. With the present invention, better high quality communication links can be achieved. Furthermore, resource allocation in the hybrid network could be improved and becomes more efficient over the prior art.