Abstract:
A compositional kit for forming a composition includes a first composition and a second composition which are separate. The first composition includes a filler, a cross-linking agent and an emissivity agent; and the second composition includes a silicate binder. Methods for making a compositional kit and for making a coated overhead conductor are also provided.
Abstract:
An aerial cable treatment system having a cable surface preparation assembly and a coating assembly. The cable treatment system is translatable along an in-situ aerial cable. The cable surface preparation assembly can remove dirt and debris, such as carbon deposit, grease, mud, fertilizers, bird droppings, fungal growth, mosses, soot, ice, and like from aerial cables with varying sizes as it translates along the cable. The coating assembly can apply a coating to the outer surface of the in-situ aerial cable it translates along the cable.
Abstract:
An electrical cable includes a plurality of conductors forming a conductor core, one or more insulation layers at least partially surrounding at least one of the plurality of conductors, an outer jacket surrounding the conductor core and a film applied to the exterior surface of the outer jacket. The film includes high visibility particles. Methods of forming electrical cables are also described herein.
Abstract:
A cable separator comprising a preshaped article having a longitudinal length, wherein said preshaped article is substantially entirely formed of a foamed polymer material having a glass transition temperature greater than 160° C. and being halogen-free is provided. A data communications cable comprising a plurality of conductors and the cable separator of the present invention, wherein said cable separator separates the plurality of conductors is provided. A method of manufacturing a cable comprising the separator of the invention is also provided.
Abstract:
A coated electrical accessory includes a bare electrical accessory and a substantially inorganic and dried coating layer coating the bare electrical accessory. The coating layer includes a heat radiating agent and a binder. When the coated electrical accessory is tested in accordance with ANSI CI 19.4-2004 with an amount of imparted current, the coated electrical accessory exhibits an operating temperature that is less than an operating temperature of a bare electrical accessory tested in accordance with ANSI CI 19.4-2004 with the same amount of imparted current. Methods are also provided.
Abstract:
Compositions including a filler, an emissivity agent, a crosslinking facilitator, and a metal silicate binder are disclosed. The compositions can be curable at ambient conditions. Methods of coating overhead conductor and power transmission line accessories with such coating compositions are also disclosed.
Abstract:
Systems and methods to apply an on-demand color scheme to a cable are described. The systems and methods include the application of a plurality of colored coating fluids to an outer cable layer.
Abstract:
A cable separator comprising a preshaped article having a longitudinal length, wherein said preshaped article is substantially entirely formed of a foamed polymer material having a glass transition temperature greater than 160° C. and being halogen-free is provided. A data communications cable comprising a plurality of conductors and the cable separator of the present invention, wherein said cable separator separates the plurality of conductors is provided. A method of manufacturing a cable comprising the separator of the invention is also provided.
Abstract:
Articles including a conductive metal substrate and a protective coating on the metal substrate are provided. The protective coating is electrochemically deposited from an electrodeposition medium including a silicon alkoxide and quaternary ammonium compounds or quaternary phosphonium compounds. Methods of electrochemically depositing such protective coatings are also described herein.
Abstract:
A cable intended for use in a nuclear environment includes one or more conductors, a longitudinally applied corrugated shield surrounding the one or more conductors, and a cross-linked polyolefin jacket layer surrounding the longitudinally applied corrugated shield. The cable conducts about 5,000 volts to about 68,000 volts in use and is radiation resistant and heat resistant. The cable comprises a life span of about 40 years or more when measured in accordance with IEEE 323. Methods for making a cable and a nuclear reactor utilizing such a cable are also provided.