Abstract:
A method of high speed downlink packet access (HSDPA) link adaptation, comprises receiving at a Node B a channel quality measurement metric over a Measured Results on random access channel (RACH) information element (IE). The link is adapted based upon the received channel quality metric. In addition, a corresponding method at a WTRU is disclosed comprising performing a channel quality metric measurement and transmitting the channel quality metric measurement over a Measured Results on RACH IE to the Node B.
Abstract:
The present invention is related to a method and system for sending and reducing uplink feedback signaling by a wireless transmit/receive unit (WTRU) related to transmission of multimedia broadcast multi cast service (MBMS) data over a high speed down link packet access (HSDPA) channel. A Node B may pre-allocate a time frequency region or a common channelization code for the feedback. A triggering criterion for reporting a channel quality indicator (CQI) is set and WTRUs send a CQI to a Node B only if the triggering criterion is satisfied. The triggering criterion may be a current operating CQI value at the Node B, or based on erroneous transport block reception statistics, or a predetermined time period. A feedback reduction method related to ACK/NACK includes the WTRU sending an indication of an average number of transmissions needed to successfully decode the data instead of sending an ACK/NACK for every transmission interval.
Abstract:
A wireless transmit/receive units (WTRUs) receives a downlink transmission from a Node-B and decodes the downlink transmission. If the decoding is not successful, the WTRU sends a pre-defined burst signifying a negative acknowledgement (NACK) to the Node-B via a contention-based shared feedback channel. The pre-defined burst may be sent only once without requiring an acknowledgement. The Node-B calibrates a downlink transmit power so that the downlink transmission is transmitted to the WTRUs with a high likelihood. The Node-B may send a downlink transmission including multiple data streams processed using different modulation and coding schemes so that a WTRU having a high signal quality decodes all data streams while a WTRU having a low signal quality decodes less than all data streams. The Node-B sends a channel quality indicator (CQI) threshold so that each WTRU determines a data stream to report feedback based on the CQI threshold and a measured CQI.
Abstract:
A method implemented in a wireless transmit/receive unit (WTRU) for transmitting a channel quality indication (CQI) report or other measurement report begins by receiving a trigger. A CQI report is transmitted to a handover target Node B until a stop condition is reached. The WTRU will stop transmitting CQI reports to the target Node B if the stop condition is reached. A WTRU configured to perform the method includes an antenna, a transmitter/receiver connected to the antenna, and a processor communicating with the transmitter/receiver, the processor configured to transmit the CQI report to the handover target Node B.
Abstract:
In a wireless communication system comprising at least one wireless transmit/receive unit (WTRU), a base station, and a radio network controller (RNC), a method for constant envelope orthogonal frequency division multiplexin (CE-OFDM) modulation (430) comprises the WTRU (110) performing an inverse transform on the data (420). The WTRU next performs constant envelope (CE) modulation on the data and transmits the CE-OFDM data to the base station. The base station receives the data and CE demodulates the data. The base station performs a transform on the demodulated data.
Abstract:
A list of candidate basic service sets (BSSs) or access points (APs) is included in a medium access control (MAC) message which is received at a wireless transmit/receive unit (WTRU). The list includes an identity of each candidate BSS or AP and a preference indicator which indicates an extent that the candidate BSS or AP is preferred for selection and whether the candidate BSS or AP shall not be considered for selection. A BSS or AP is selected by the WTRU using the list.
Abstract:
A method for neighbor scanning in a wireless local area network having a station, a first access point (AP) to which the station is associated, and a second AP begins by generating timing information regarding a beacon signal sent by the second AP. The timing information is reported from the first AP to the station. The station schedules a time, based on the timing information, to listen for the beacon signal transmitted by the second AP.
Abstract:
In a wireless communication system, (e.g., a wireless local area network (WLAN)), including a plurality of wireless transmit/receive units (WTRUs) and a coordinating node, (e.g., an access point (AP)), path loss is estimated by transmitting a loud packet from a first one of the WTRUs to a second one of the WTRUs. The coordinating node transmits a loud packet generation request message. A first one of the WTRUs receives the loud packet generation request message and transmits at least one loud packet at a transmission power specified by the loud packet generation request message. Optionally, the first WTRU transmits a loud packet generation response message. A second one of the WTRUs receives the loud packet and determines a path loss between the first WTRU and the second WTRU by subtracting the signal strength of the loud packet from the determined transmission power of the loud packet.
Abstract:
The method involves sending a deferral management capabilities request message to a wireless transmit/receive unit (WTRU) to report deferral management capabilities of an access point (AP). A deferral management capabilities indicator message is sent to the AP in response to the deferral management capabilities request. A deferral management parameter set message is sent to the WTRU to indicate values for setting deferral management parameters. A deferral management parameter set execution confirmation message is sent to the AP in response to the set message. An independent claim is also included for a wireless local area network (WLAN) comprising an access point (AP).
Abstract:
A method for radio resource management (RRM) in a wireless local area network (WLAN) having an access point and a station begins by obtaining a first group of parameters from a current traffic channel. Measurements from all available channels are taken for a second group of parameters. The radio resources of the WLAN are autonomously managed by selectively invoking at least one RRM algorithm that uses at least one parameter. A RRM algorithm may be invoked based upon results produced by a previously executed RRM algorithm, whereby RRM algorithms may be continuously invoked such that the radio resources are autonomously managed.