Abstract:
The present invention provides a plasma generator provided with a mixing circuit, said plasma generator being reduced in size and capable of being easily installed in a restricted space inside an engine. The present invention is a heat engine or a plasma generator provided with an ignition coil for supplying a discharge voltage, an electromagnetic wave oscillator that generates electromagnetic waves, a mixer that mixes energy for discharge with electromagnetic wave energy, and a spark plug that causes a discharge and introduces the electromagnetic wave energy to a reaction region. The discharge and electromagnetic wave energy are used together in the reaction region, wherein a combustion reaction or plasma reaction is carried out, triggering a combustion reaction or plasma reaction. The plasma generator is characterized in that part of a member that constitutes the spark plug is used as part of a member that forms the mixer.
Abstract:
[Problem] To provide a measuring equippment which can be easily mounted to an internal combustion engine. [Solution] A measuring equippment (30) is equipped with: a measurement container (31) having formed therein a chamber (34) to be measured, into which a gas to be measured enters, and an inlet passage, through which the gas to be measured is introduced into the chamber (34) to be measured; and a connection structure (32) which, when a plug is not mounted to a plughole (25) that opens into a combustion chamber (24) in an internal combustion engine (20), connects the inlet passage to the plughole(25). The measurement container (31) may be provided with a plasma generation device (45), which generates plasma in the chamber (34) to be measured, or a mounting structure for mounting a heating device, which heats the gas to be measured in the chamber (34) to be measured.
Abstract:
The present invention addresses the issue of improving generation efficiency of plasma in relation to usage power in a plasma generation apparatus. The present invention is directed to a plasma generation apparatus provided with an electromagnetic wave emission antenna and a discharge electrode. The plasma generation apparatus includes a plasma control device that controls generation of plasma, and is characterized that the plasma control device causes the electromagnetic wave emission antenna to intermittently emit electromagnetic waves by way of a drive sequence control. Especially, the plasma control device may preferably control an oscillating frequency, a power, output timing, a pulse width, a pulse cycle, and a duty cycle of the electromagnetic waves.
Abstract:
The object of the present invention is to implement an analysis result provision system that can acquire an analysis result of a target substance without transferring the substance when the substance is analyzed using plasma light information occurred from plasma area where the substance is turned to plasma state. The present invention relates to a provision system of analysis result including an analytical terminal that turns a target substance to plasma state and acquires plasma light information occurred from plasma area, and a host computer. The host computer includes host side communication part that acquires plasma light information via telecommunication line, and information analysis part that analyzes the target substance using plasma light information acquired by the host side communication part. The host side communication part transmits the analysis result of the target substance to the sender of the plasma light information. The analysis result is obtained by the analysis of the information analysis part using plasma light information.
Abstract:
The objective of the present invention is to improve the heat conductance of the center electrode of the spark plug in which its center electrode protrudes to the combustion chamber from the defining surface of the chamber. The ignition plug of the present invention comprises a center electrode to where high voltage for spark discharge is applied; an insulator having a penetration hole to where the center electrode is fit; and an earth electrode that forms a discharge gap between the center electrode at where the spark discharge is generated. The center electrode protrudes from a defining surface of an internal combustion engine to a combustion chamber when the ignition plug is attached to the engine. The entirety of a main body of the center electrodes that is fixed by fitting into a penetration hole of the insulator is made of high heat conductance material having heat-conductivity of 250 W / mK or more.
Abstract:
The size of the plasma produced by a plasma-generating device that generates plasma using electromagnetic (EM) radiation is enlarged. The plasma-generating device has an EM-wave-generating device that generates EM radiation, a radiation antenna that emits the EM radiation supplied from the EM-wave-generating device to a target space, and a receiving antenna located near the radiation antenna. The receiving antenna is grounded such that an adjacent portion that is close to the radiation antenna has a higher voltage while the EM radiation is emitted from the radiation antenna. The plasma-generating device generates plasma in the target space near the radiation antenna and the adjacent portion by emitting EM radiation from the radiation antenna.
Abstract:
It is configured such that plasma generated at a time of ignition should diffuse over an entire combustion chamber in a spark ignition type internal combustion engine in order to improve fuel efficiency. An ignition device for a spark ignition type internal combustion engine is provided including an ignition plug and a transmission antenna provided in the vicinity of the ignition plug and adapted to transmit an electromagnetic wave to a combustion chamber. The ignition device allows a spark discharge generated between a central electrode and a ground electrode of the ignition plug to react with an electric field created via the transmission antenna in the combustion chamber so as to generate plasma and ignite fuel air mixture. A receiving antenna is arranged on a combustion chamber -facing surface of at least one of an intake valve and an exhaust valve, and is adapted to receive the electromagnetic wave transmitted from the transmission antenna.
Abstract:
A coat forming apparatus 100 includes a droplet supply unit 110 and an active species supply unit 120. The droplet supply unit 110 is adapted to spray or drop a droplet for coat forming toward an object 116. The active species supply unit 120 is adapted to supply an active species to be brought into contact with the droplet moving from the droplet supply unit 110 toward the object 116. The coating is formed on a surface of the object 116 by the droplet that has been brought into contact with the active species.
Abstract:
An igniter that has a large ignition power and an electromagnetic wave resonance structure with a small reflected power is provided. An igniter comprises a first rectangular substrate and a second rectangular substrate each having a longitudinal side, and at least one intermediate substrate arranged between the first substrate and the second substrate and having a longitudinal side which is shorter than each longitudinal side of the first substrate and the second substrate, the first substrate has an input part configured to receive an input of an electromagnetic wave from an outside, a first electrode, and an electromagnetic wave transmission line that connects the input part to the first electrode, each of the first electrode and the electromagnetic wave transmission line being provided at a surface of the first substrate on a side of the at least one intermediate substrate, the second substrate has an electromagnetic wave resonator and a second electrode that is electrically connected to the electromagnetic wave resonator, each of the electromagnetic wave resonator and a second electrode being provided at a surface of the second substrate on a side of the at least one intermediate substrate, and a space is formed between the first substrate and the second substrate at a position at which the at least one intermediate substrate does not exist therebetween, such that the first electrode and the second electrode are faced each other and located away from each other across the space and a part of the electromagnetic wave transmission line and a part of the resonator are faced each other and located away from each other across the space.
Abstract:
The object is to provide an injector with a built-in ignition device that can achieve downsize of device as a whole without changing significantly the structure of a fuel injection device. The injector with the built-in ignition device comprises an ignition device 3 and a fuel injection device 2. In the ignition device 3, an electromagnetic wave oscillated from an electromagnetic wave oscillator MW is boosted by a booster that is constituted by a resonance structure, a potential difference between a ground electrode 51 and a discharge electrode 31 is increased, and a discharge is caused. In the fuel injection device 2, a valve body part of a nozzle needle 24 is moved toward or away from a valve seat (orifis) 23a, and thereby, the fuel injection control is performed. Then, the resonance structure is formed by a dielectric member 30 that is connected to the electromagnetic wave oscillator and formed on the surface of a fuel injection pipe 21, and an inner wall surface 50a of a mounting port 50 for an injector of a cylinder head 5. A discharge electrode 31 is a projection that is formed on the surface of the fuel injection pipe 21, and a discharge is caused by making a position of the wall surface of the mounting port 5 that is closest to the discharge electrode 31 as a ground electrode 51.