Abstract:
Embodiments described herein provide a graphics, media, and compute device having a tiled architecture composed of a number of tiles of smaller graphics devices. The work distribution infrastructure for such device enables the distribution of workloads across multiple tiles of the device. Work items can be submitted to any one or more of the multiple tiles, with workloads able to span multiple tiles. Additionally, upon completion of a work item, graphics, media, and/or compute engines within the device can readily acquire new work items for execution with minimal latency.
Abstract:
An apparatus to facilitate doorbell notifications is disclosed. The apparatus includes memory-mapped I/O (MMIO) base address registers including a physical function (PF) and plurality of virtual functions (VF), wherein each function's base address register comprises a plurality of doorbell pages and doorbell hardware including doorbell registers, each having an assignable function identifier (ID) and offset, and comprising a plurality of doorbells to activate a doorbell notification in response to receiving a doorbell trigger from an associated doorbell page set upon detection of an access request.
Abstract:
Embodiments described herein provide a graphics, media, and compute device having a tiled architecture composed of a number of tiles of smaller graphics devices. The work distribution infrastructure for such device enables the distribution of workloads across multiple tiles of the device. Work items can be submitted to any one or more of the multiple tiles, with workloads able to span multiple tiles. Additionally, upon completion of a work item, graphics, media, and/or compute engines within the device can readily acquire new work items for execution with minimal latency.
Abstract:
Techniques are disclosed for processing rendering engine workload of a graphics system in a secure fashion, wherein at least some security processing of the workload is offloaded from software-based security parsing to hardware-based security parsing. In some embodiments, commands from a given application are received by a user mode driver (UMD), which is configured to generate a command buffer delineated into privileged and/or non-privileged command sections. The delineated command buffer can then be passed by the UMD to a kernel-mode driver (KMD), which is configured to parse and validate only privileged buffer sections, but to issue all other batch buffers with a privilege indicator set to non-privileged. A graphics processing unit (GPU) can receive the privilege-designated batch buffers from the KMD, and is configured to disallow execution of any privileged command from a non-privileged batch buffer, while any privileged commands from privileged batch buffers are unrestricted by the GPU
Abstract:
Described herein are computer graphics technologies to facilitate effective and efficient memory handling for blocks of memory including texture maps. More particularly, one or more implementations described herein facilitates hierarchical lossless compression of memory with null data support for memory resources, including texture maps. More particularly still, one or more implementations described herein facilitates the use of meta-data for lossless compression and the support of null encodings for Tiled Resources. This technology also permits use of the fast-clear compression method, where meta-data specifies that the entire access should return some specified clear value.
Abstract:
Methods and apparatus relating to mid-thread pre-emption with software assisted context switch are described. In an embodiment, one or more threads executing on a Graphics Processing Unit (GPU) are stopped at an instruction level granularity in response to a request to pre-empt the one or more threads. The context data of the one or more threads is copied to memory in response to completion of the one or more threads at the instruction level granularity and/or one or more instructions. Other embodiments are also disclosed and claimed.
Abstract:
Described herein are computer graphics technologies to facilitate effective and efficient memory handling for blocks of memory including texture maps. More particularly, one or more implementations described herein facilitates hierarchical lossless compression of memory with null data support for memory resources, including texture maps. More particularly still, one or more implementations described herein facilitates the use of meta-data for lossless compression and the support of null encodings for Tiled Resources. This technology also permits use of the fast-clear compression method, where meta-data specifies that the entire access should return some specified clear value.
Abstract:
An apparatus and method for identifying sub-groups of execution resources for parallel pixel processing. For example, one embodiment of a method comprises: determining X and Y coordinates for a pixel block to be processed; performing a first set of one or more modulus operations using even bits from the X and Y coordinates to generate a first intermediate result; performing a second set of one or more modulus operations using odd bits from the X and Y coordinates to generate a second intermediate result; comparing the first intermediate result and the second intermediate result to generate a final result; and using the final result to select a first set of processing resources from a set of N processing resources for processing the pixel block.
Abstract:
Methods and apparatuses may prioritize the processing of high priority and low priority contexts submitted to a processing unit through separate high priority and low priority context submission ports. According to one embodiment, submission of a context to the low priority port causes contexts in progress to be preempted, whereas submission of a context to the high priority port causes contexts in progress to be paused.
Abstract:
A method includes detecting a trigger condition, and in response to detecting the trigger condition, reducing a voltage applied to a graphics controller component of a memory controller. The reduction in voltage may cause the voltage to be reduced below a voltage level required to maintain context information in the graphics controller component.