Abstract:
An acoustic sensor system has an acoustic sensor with a cavity, a cavity leakage, and a cavity pressure. The acoustic sensor system further has a test controller coupled to the acoustic sensor that causes a change in the cavity pressure. A response of the acoustic sensor to the change in the cavity pressure is used to measure the cavity leakage.
Abstract:
A method and circuit for testing an acoustic sensor are disclosed. In a first aspect, the method comprises using electro-mechanical features of the acoustic sensor to measure characteristic of the acoustic sensor. In a second aspect, the method comprises utilizing an actuation signal to evaluate mechanical characteristics of the acoustic sensor. In a third aspect, the method comprises using a feedthrough cancellation system to measure a capacitance of the acoustic sensor. In the fourth aspect, the circuit comprises a mechanism for driving an electrical signal into a signal path of the acoustic sensor to cancel an electrical feedthrough signal provided to the signal path, wherein any of the electrical signal and the electrical feedthrough signal are within or above an audio range.
Abstract:
Various embodiments provide for an integrated temperature sensor and microphone package where the temperature sensor is located in, over, or near an acoustic port associated with the microphone. This placement of the temperature sensor near the acoustic port enables the temperature sensor to more accurately determine the ambient air temperature and reduces heat island interference cause by heat associated with the integrated circuit. In an embodiment, the temperature sensor can be a thermocouple formed over a substrate, with the temperature sensing portion of the thermocouple formed over the acoustic port. In another embodiment, the temperature sensor can be formed on an application specific integrated circuit that extends into or over the acoustic port. In another embodiment, a thermally conductive channel in a substrate can be placed near the acoustic port to enable the temperature sensor to determine the ambient temperature via the channel.
Abstract:
Acoustic ambient temperature and humidity sensing based on determination of sound velocity is described, in addition to sensors, algorithms, devices, systems, and methods therefor. An exemplary embodiment employs sound velocity in the determination of ambient temperature and humidity. Provided implementations include determinations of sound velocity based on time of flight of a coded acoustic signal and/or based on resonance frequency of a Helmholtz resonator.
Abstract:
Acoustic ambient temperature and humidity sensing based on determination of sound velocity is described, in addition to sensors, algorithms, devices, systems, and methods therefor. An exemplary embodiment employs sound velocity in the determination of ambient temperature and humidity. Provided implementations include determinations of sound velocity based on time of flight of a coded acoustic signal and/or based on resonance frequency of a Helmholtz resonator.
Abstract:
Signal processing for an acoustic sensor bi-directional communication channel is presented herein. The acoustic sensor can comprise a micro-electro-mechanical system (MEMS) transducer configured to generate, based on an acoustic pressure, an audio output; and a bi-directional communication component configured to send and/or receive data that has been superimposed on the audio output using common mode signaling, time division multiplexing, or frequency separation. In an example, a signal processing component is configured to send the audio output directed to an external device utilizing differential mode signaling between respective pins of the acoustic sensor; and send the data utilizing the common mode signaling comprising a sum of voltages of the respective pins. In other examples, the signal processing component is configured to send and/or receive the data, and send the audio output, during different time periods; or send the data based on a frequency range outside an audio band.
Abstract:
An acoustic sensor system has an acoustic sensor with a cavity, a cavity leakage, and a cavity pressure. The acoustic sensor system further has a test controller coupled to the acoustic sensor that causes a change in the cavity pressure. A response of the acoustic sensor to the change in the cavity pressure is used to measure the cavity leakage.
Abstract:
Systems and techniques for processing a signal associated with a microphone are presented. The system includes a microphone component and a preamplifier. The microphone component is contained in a housing. The preamplifier includes an input buffer that receives a signal generated by the microphone component. The input buffer also generates an output signal that comprises a direct current (DC) voltage offset in comparison to the signal, where the preamplifier controls a degree of the DC voltage offset based on a control signal.
Abstract:
A micro electro-mechanical system (MEMS) acoustic sensor is disclosed. The acoustic sensor comprises a backplate and a diaphragm. The acoustic sensor further comprises a flexible member and optional spacer member disposed between the backplate and the diaphragm resulting in a gap between the backplate and the diaphragm. The gap can vary in response to impinging pressure on the diaphragm based on the design of the flexible member and resulting in a variable capacitance between the backplate and the diaphragm. The change in the gap can result in a change in an electrical characteristic associated with the variable capacitance and can be converted to an electrical output signal corresponding to the impinging pressure on the diaphragm. The flexible member can be part of the backplate or diaphragm.
Abstract:
A MEMS capacitive sensing interface includes a sense capacitor having a first terminal and a second terminal, and having associated therewith a first electrostatic force. Further included in the MEMS capacitive sensing interface is a feedback capacitor having a third terminal and a fourth terminal, the feedback capacitor having associated therewith a second electrostatic force. The second and the fourth terminals are coupled to a common mass, and a net electrostatic force includes the first and second electrostatic forces acting on the common mass. Further, a capacitance measurement circuit measures the sense capacitance and couples the first terminal and the third terminal. The capacitance measurement circuit, the sense capacitor, and the feedback capacitor define a feedback loop that substantially eliminates dependence of the net electrostatic force on a position of the common mass.