Abstract:
A method of authenticating security documents and a mobile device, especially a smartphone, programmed to carry out the method, based on an analysis of features which are produced by intaglio printing, which analysis involves a decomposition of sample images of a candidate document to be authenticated based on Wavelets, each sample image being digitally processed by performing a Wavelet transform of the sample image in order to derive a set of classification features. The method is based on an adaptive approach, which includes the following steps: —prior to carrying out the Wavelet transform, defining a categorization map containing local information about different intaglio line structures that are found on the security documents; —carrying out a Wavelet selection amongst a pool of Wavelet types based on the categorization map; and —performing the Wavelet transform of the sample image on the basis of the selected Wavelet.
Abstract:
There is described a method for touchless counting of substantially planar substrates, especially banknotes, which are stacked in the form of stacks of substrates, said method comprising the following steps: taking at least one sample image of a portion of a side of a stack of substrates, which sample image contains contrast information representing substrate edges that extend along substantially a first direction in the sample image; processing the contrast information representing the substrate edges within the sample image (10), which processing includes subjecting at least one area of interest (20) within the sample image (10) to anisotropic diffusion to produce a processed image containing a substantially coherent set of continuous lines representing the substrate edges; and counting the number of substrate edges in said processed image.
Abstract:
There is described a method for checking the authenticity of security documents, in particular banknotes, wherein authentic security documents comprise security features (41-49; 30; 10; 51, 52) printed, applied or otherwise provided on the security documents, which security features comprise characteristic visual features intrinsic to the processes used for producing the security documents. The method comprises the step of digitally processing a sample image of at least one region of interest (R.o.I.) of the surface of a candidate document to be authenticated, which region of interest encompasses at least part of the security features, the digital processing including performing a decomposition of the sample image by means of wavelet transform (WT) of the sample image. Such decomposition of the sample image is based on a wavelet packet transform (WPT) of the sample image, preferably a so-called two-dimensional shift invariant WPT (2D-SIWPT).
Abstract:
There is described method of processing printed sheets (100), especially sheets of printed securities, into individual documents (150), such as banknotes, each printed sheet (100) comprising an array of imprints arranged in a matrix of rows and columns. The method comprises the following steps : (i) pre-processing the printed sheets (100) by partly slitting each printed sheet (100) row-wise or column-wise to form slits (110) between adjacent rows or adjacent columns of imprints, slitting being performed in such a manner that the adjacent rows or adjacent columns of imprints are still attached to one another at edges of each thus pre-processed printed sheet (100'); (ii) stacking the pre- processed printed sheets (100') so as to form sheet stacks (121, 122) comprising a predetermined number of pre-processed printed sheets (100') stacked one upon the other; and (iii) processing the sheet stacks (121, 122) by cutting each sheet stack (121, 122) column-wise or row-wise along cutting lines (115) between adjacent columns or rows of imprints, cutting being performed along a direction perpendicular to the direction of the slits (1 10) and in such a manner that individual documents (150) are produced as a result. Also described is a system for carrying out this method.
Abstract:
A device for irradiating substrate material (S) in the form of a sheet or web in a sheet-fed or web-fed processing system, especially in a sheet-fed or web-fed processing or printing press. The device comprises at least one flexible light-emitting sheet (10) for producing radiation of a desired wavelength or wavelength band, which light-emitting sheet (10) is disposed along a path of the substrate material (S) to subject the substrate material (S) to said radiation. The flexible light-emitting sheet (10) is preferably an organic light-emitting device (OLED) sheet.