Abstract:
Variable liquid crystal devices for controlling the propagation of light through a liquid crystal layer use a frequency dependent material to dynamically reconfigure effective electrode structures in the device. The frequency of a drive signal that generates an electric field in the device may be varied, and the frequency dependent material has different charge mobilities for the different frequencies. At a low charge mobility, the frequency dependent material has little effect on the existing electrode structures. However, at a high charge mobility, the frequency dependent material appears as an extension of the fixed electrodes, and may be used to change the effective electrode structure and, thereby, the spatial profile of the electric field. This, in turn, changes the optical properties of the liquid crystal, thus allowing the optical device to be frequency controllable.
Abstract:
A tunable liquid crystal optical device defining an optical aperture and having a layered structure. The device includes a film electrode formed on a surface of a first substrate and covered by a second substrate, and a contact structure filling a volume within the layered structure and contacting the film electrode. The contact structure is located outside of the optical aperture and provides an electrical connection surface much larger than a thickness of the film electrode, such that reliable electrical connections may be made to the electrode, particularly in the context of wafer scale manufacturing of such a device.