Abstract:
An optical structure can include a nanocrystal on a surface of an optical waveguide in a manner to couple the nanocrystal to the optical field of light propagating through the optical waveguide to generate an emission from the nanocrystal. The structure can be configured to restrict propagation of the emission from the nanocrystal along the waveguide.
Abstract:
A transparent photovoltaic cell and method of making are disclosed. The photovoltaic cell may include a transparent substrate and a first active material overlying the substrate. The first active material may have a first absorption peak at a wavelength greater than about 650 nanometers. A second active material is disposed overlying the substrate, the second active material having a second absorption peak at a wavelength outside of the visible light spectrum. The photovoltaic cell may also include a transparent cathode and a transparent anode.
Abstract:
Embodiments described herein provide functionalized carbon nanostructures for use in various devices, including photovoltaic devices (e.g., solar cells). In some embodiments, carbon nanostructures substituted with at least one cyclobutyl and/or cyclobutenyl group are provided. Devices including such materials may exhibit increased efficiency, increased open circuit potential, high electron/hole mobility, and/or low electrical resistance.
Abstract:
The present invention generally relates to composition and methods for upconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the nanocrystal and the organic material. In certain embodiments, the nanocrystal has a first excited energy state with an energy greater than a triplet state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the nanocrystal to produce triplet excitons. The triplet excitons may then transfer from the nanocrystal to the organic material and undergo triplet-triplet annihilation, creating a singlet state of approximately twice the energy of the triplet exciton. In certain embodiments, the singlet state fluoresces, resulting in the formation of a high energy photon.
Abstract:
The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias. Applications of the disclosed embodiments include tunable lasers, microphones, microspeakers, remotely-activated contact-less pressure sensors and the like.
Abstract:
The present invention generally relates to articles, devices, systems, and methods relating to the storage of solar energy and/or solar energy utilization. In some embodiments, the articles, devices, and systems may be used to carry out photocatalytic reactions, for example, the photocatalytic production of oxygen and/or hydrogen gases from water.
Abstract:
An active acoustic system includes a thin-film sheet having an array of piezoelectric microstructures embossed in the film. Each piezoelectric microstructure may act as a speaker and/or a microphone. A control circuit is configured to individually address the piezoelectric microstructures to provide a separate voltage signal to, or receive a separate voltage signal from, each piezoelectric microstructure.
Abstract:
Disclosed are vapor transport deposition systems and methods for alternating sequential vapor transport deposition of multi-component perovskite thin-films. The systems include multiple vaporizing sources that are mechanically or digitally controlled for high throughput deposition. Alternating sequential deposition provides faster sequential deposition, and allows for reduced material degradation due to different vapor temperatures.
Abstract:
The present invention generally relates to composition and methods for downconverting light. In some embodiments, the composition and methods comprise an organic material, a nanocrystal, and a ligand capable of facilitating energy transfer between the organic material and the nanocrystal. In certain embodiments, the nanocrystal has a first excited energy state with an energy less than a triplet energy state of the organic material. The organic material, in some embodiments, may be aromatic and/or include one or more pi-conjugated carbon-carbon double bonds. In some cases, incident light may be absorbed by the organic material to produce two triplet excitons. The triplet excitons may then transfer to the nanocrystal via the ligand, where they can undergo recombination, resulting in the formation low energy photons.
Abstract:
A light emitting device can include a light source, a first electrode, a second electrode, a first barrier layer, a second barrier layer, and an emitter layer between the first barrier layer and the second barrier layer. A method of controllably generating light can comprise two states: An ON state, wherein an emitter layer of a device (which includes a photoluminescent pixel) is illuminated with a light source in the absence of an electric field, and the emitter layer generates light through photoluminescence; and an OFF state, wherein an emitter layer of a device (which includes a photoluminescent pixel) is illuminated with a light source in the presence of a static or time-varying electric field, and the electric field or induced current results in quenching of the emitter photoluminescence.