Abstract:
A composition is disclosed which comprises (i) a macromer prepared by reacting an unsaturated diacid having a carbon-carbon double bond and a saturated diacid, and (ii) a bioactive ceramic grafted to the macromer. In one embodiment, the unsaturated diacid having a carbon-carbon double bond is fumaric acid, the saturated diacid is compatible with fumaric acid and poly(propylene fumarate) such as succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and mixtures thereof, and the bioactive ceramic is hydroxyapatite. In another embodiment, hydroxyapatite is grafted with a biodegradable and crosslinkable macromer comprising silane units alternating with furnarate and adipate units.
Abstract:
Fumaric acid or a salt thereof, such as a fumaryl halide (e.g., fumaryl chloride), which contains unsaturated carbon-carbon double bonds that can be used for in situ crosslinking, is copolymerized with a biodegradable poly(caprolactone) macromer that has a flexible backbone such that the resulting copolymer may self-crosslink in the absence of a crosslinking agent. The biocompatible and bioresorbable poly(caprolactone fumarate) biomaterial is useful in the fabrication of injectable and in-situ hardening scaffolds for application in skeletal reconstruction.