Abstract:
An improved turbo code based incremental redundancy includes a first step (102) of puncturing a data stream for a first transmission to provide a set of first unpunctured trellis sections. A next step (104) includes puncturing a data stream for a second transmission to provide a set of second unpunctured trellis sections. A next step (106) includes incremental redundancy combining the first and second transmissions of the trellises to provide non-adjacent first and second unpunctured trellis sections. The above arrangement results in a uniform distribution of punctured and unpunctured bits to provide lower errors.
Abstract:
The method includes acquiring a signal (501); inputting (502), at a first time, a received symbol to a demodulator having a plurality of outputs to produce a set of early outputs; inputting (504), at a second time, the received symbol to the demodulator to produce a set of on-time outputs; inputting (505), at a third time, the received symbol to the demodulator to produce a set of late outputs; and comparing (506) at least one output in the set of early outputs with at least one output in the set of late outputs to produce a timing measure.
Abstract:
A code division multiple access (CDMA) communication system reduces system self-interference and enhances system capacity by making rate selection decisions for individual speech encoders in concert with other speech encoders. The system utilizes perceptually weighted error metrics (401) as input into a rate controller (404) which determines and provides selected rates (402) back to the encoders (105). The system provides optimum voice quality and system capacity in that it allows specific encoders to decrease their rate, which improves capacity, as necessary while allowing other encoders to maintain their rates. This prevents needless degradation in voice quality at those times when system capacity needs to be temporarily increased.
Abstract:
A wireless communication terminal including a controller coupled to a wireless transceiver that receives a first control message on an anchor carrier, wherein the first control message includes a resource assignment for the anchor carrier. The transceiver is also configured to receive a second control message on the anchor carrier, the second control message associated with a set of component carriers, wherein the set of component carriers are distinct from the anchor carrier. The controller determines a resource assignment for at least one component carrier in the set of component carriers using both the first and the second control messages.
Abstract:
A wireless communication network entity (400) and a method therein wherein data is encoded using an error correcting code to form a first codeword, for example, a cyclic redundancy code, including redundancy. A second codeword is generated by encoding additional data on a portion of the first codeword, wherein the portion of the first codeword on which the additional data is encoded being within an error correction capability of the first codeword.
Abstract:
Disclose is a synchronized wireless communication network (100) operating in single frequency network mode comprising a first base station (502) broadcasting, on a first channel, broadcast data and a common sequence (508) that is generated from a first channel identifier, and wherein the first base station transmits data on a common control channel. A second base station (510), adjacent to the first base station and synchronized with the first base station, the second base station simultaneously broadcasting on the first channel the broadcast data and the common sequence, and wherein the second base station transmits data on a common control channel.
Abstract:
Disclose is a synchronized wireless communication network (100) operating in single frequency network mode comprising a first base station (502) broadcasting, on a first channel, broadcast data and a common sequence (508) that is generated from a first channel identifier, and wherein the first base station transmits data on a common control channel. A second base station (510), adjacent to the first base station and synchronized with the first base station, the second base station simultaneously broadcasting on the first channel the broadcast data and the common sequence, and wherein the second base station transmits data on a common control channel.
Abstract:
A method and apparatus for handling a difference between a first and second message prior to decoding is disclosed. The signaling scenario illustrated by FlG. 1 and using the codeword properties defined herein, the various embodiments may combine multiple messages under the hypothesis that the value of a message portion corresponding to any subsequent observed transmission is different. Accordingly, a first set of observations (LLR's) (601) may be compared with a second or subsequent set of observations (603), and if the observations are found sufficiently similar, may be further compared in the context of a hypothesized difference (607) in constituent message information words. Once any difference in information words is identified, the second or subsequent set of observations may be combined (611) with the first set of observations after suitable arithmetic processing, and prior to further decoding.
Abstract:
A wireless communication entity schedulable in a -wireless communication network, including a controller (603) communicably coupled to a power amplifier (608) wherein the controller varies a maximum transmit power of the wireless communication entity based on the radio resource assignment information receiver by the radio receiver.
Abstract:
A method in a transmitter for data collision avoidance in an uncoordinated frequency hopping communication system is disclosed. The base station (104) first determines (304) that a first data set to be sent to a first device (105) and a second data set to be sent to a second device (107) are scheduled to be transmitted simultaneously on a first frequency of a frequency hop-set. The device then transmits (310) the first data set on the first frequency of the frequency hop-set. The base station delays (312) transmission of the second data set, and finally transmits (316) the second data set on a second frequency of a frequency hop-set.