Abstract:
Improved silicon/germanium nanoparticle inks are described that have silicon/ germanium nanoparticles well distributed within a stable dispersion. In particular the inks are formulated with a centrifugation step to remove contaminants as well as less well dispersed portions of the dispersion. A sonication step can be used after the centrifugation, which is observed to result in a synergistic improvement to the quality of some of the inks. The silicon/germanium ink properties can be engineered for particular deposition applications, such as spin coating or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon/germanium nanoparticles. The silicon/germanium nanoparticles are well suited for forming semiconductor components, such as components for thin film transistors or solar cell contacts.
Abstract:
Sub-atmospheric pressure chemical vapor deposition is described with a directed reactant flow and a substrate that moves relative to the flow. Thus, using this CVD configuration a relatively high deposition rate can be achieved while obtaining desired levels of coating uniformity. Deposition approaches are described to place one or more inorganic layers onto a release layer, such as a porous, particulate release layer. In some embodiments, the release layer is formed from a dispersion of submicron particles that are coated onto a substrate. The processes described can be effective for the formation of silicon films that can be separated with the use of a release layer into a silicon foil. The silicon foils can be used for the formation of a range of semiconductor based devices, such as display circuits or solar cells.
Abstract:
Highly uniform silicon/germanium nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silicon/germanium particles can be surface modified to form the dispersions. The silicon/germanium nanoparticles can be doped to change the particle properties. The dispersions can be printed as an ink for appropriate/ applications. The dispersions can be used to form selectively doped deposits of semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.
Abstract:
Thin semiconductor foils can be formed using light reactive deposition. These foils can have an average thickness of less than 100 microns. In some embodiments, the semiconductor foils can have a large surface area, such as greater than about 900 square centimeters. The foil can be free standing or releasably held on one surface. The semiconductor foil can comprise elemental silicon, elemental germanium, silicon carbide, doped forms thereof, alloys thereof or mixtures thereof. The foils can be formed using a release layer that can release the foil after its deposition. The foils can be patterned, cut and processed in other ways for the formation of devices. Suitable devices that can be formed form the foils include, for example, photovoltaic modules and display control circuits.
Abstract:
Methods for forming coated substrates can be based on depositing material from a flow onto a substrate in which the coating material is formed by a reaction within the flow. In process chamber (300), the product materials may be formed in a reaction driven by photon energy absorbed from a radiation beam supplied via a light entry port (320). The flow with the product stream may be directed at the substrate via gas/paper inlet tube (306) connected to nozzle (308) and exiting by exhaust port (322). The substrate may be moved relative to the flow, such as via arm (318), which translates substrate carrier (316) through the product stream. Coating materials can be formed with densities of 65% to 95% of the fully densified coating material with a very high level of coating uniformity.
Abstract:
Nanoscale particles, particle coatings/particle arrays and corresponding consolidated material are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.