Abstract:
There is provided a microscopic observation technique capable of detecting a light-emitting object or a light-emitting particle moving in a thick sample by the scanning molecule counting method. In the inventive technique, the light from a light detection region of is detected the optical system of a confocal or multiphoton microscope is detected with while moving the light detection region in each observed subregion obtained by dividing a region to be observed into plural regions; the signal of the light from a light-emitting particle is individually detected; and the position of the light-emitting particle corresponding to the detected signal is determined in the region to be observed. The moving of the position of the light detection region in each observed subregion is performed continuously in at least two directions or and/or continuously multiple times in each observed subregion.
Abstract:
In the scanning molecule counting method of measuring light intensity from a light detection region while moving the position of the light detection region of a confocal or multiphoton microscope in a sample solution containing light-emitting particles, generating time series light intensity data and detecting each of signals of the light-emitting particles individually in the data, wherein the light-emitting particles are formed by binding to a particle to be observed a light-emitting probe which emits light through binding to the particle to be observed and in which a stochastic transition between a non-light-emitting state and a light-emitting state occurs in the unbound state, the moving speed of the position of the light detection region is adjusted to make the time during which the unbound probe is encompassed by the moving light detection region longer than an average lifetime during which the probe is in the light-emitting state.
Abstract:
There is provided optical analysis techniques in the scanning molecule counting method using the light measurement with a confocal or multiphoton microscope in which the measuring unit time in the light measurement is set to an appropriate value in order to surely detect an approximately bell shape profile of the signal of a light-emitting particle and avoid excessive increase data volume of time series light intensity data. The inventive optical analysis technique of detecting light of a light-emitting particle in a sample solution generates time series light intensity data of light from a light detection region detected during moving the position of the light detection region of a microscope in the sample solution and detects in the data a signal indicating light from each light-emitting particle individually. The measuring unit time is determined based on the size and the moving speed of the light detection region.
Abstract:
There is provided a single particle detection technique based on a scanning molecule counting method, enabling individual detection of a single particle using light measurement with a confocal or multiphoton microscope, and quantitative observation of conditions or characteristics of the particle. The inventive technique of detecting a single particle in a sample solution detects light containing substantially constant background light from a light detection region with moving the position of the light detection region of the microscope in a sample solution to generate time series light intensity data; and detects individually a light intensity reduction occurred when a single particle which does not emit light (or a particle whose emitting light intensity in a detected wavelength band is lower than the background light) enters in the light detection region in the time series light intensity data as a signal indicating the existence of each single particle.
Abstract:
There is provided a single particle detection technique based on a scanning molecule counting method, enabling individual detection of a single particle using light measurement with a confocal or multiphoton microscope, and quantitative observation of conditions or characteristics of the particle. The inventive technique of detecting a single particle in a sample solution detects light containing substantially constant background light from a light detection region with moving the position of the light detection region of the microscope in a sample solution to generate time series light intensity data; and detects individually a light intensity reduction occurred when a single particle which does not emit light (or a particle whose emitting light intensity in a detected wavelength band is lower than the background light) enters in the light detection region in the time series light intensity data as a signal indicating the existence of each single particle.
Abstract:
There is provided a microscopic observation technique capable of detecting a light-emitting object or a light-emitting particle moving in a thick sample by the scanning molecule counting method. In the inventive technique, the light from a light detection region of is detected the optical system of a confocal or multiphoton microscope is detected with while moving the light detection region in each observed subregion obtained by dividing a region to be observed into plural regions; the signal of the light from a light-emitting particle is individually detected; and the position of the light-emitting particle corresponding to the detected signal is determined in the region to be observed. The moving of the position of the light detection region in each observed subregion is performed continuously in at least two directions or and/or continuously multiple times in each observed subregion.
Abstract:
There is provided a way of enabling the discrimination or identification of the kind of a light-emitting particle corresponding to each pulse form signal in the scanning molecule counting method using the optical measurement by the confocal or multiphoton microscope. In the inventive technique, the position of a light detection region in a sample solution periodically along a predetermined route is moved in measuring the light intensity from the light detection region; and a signal of light from a light-emitting particle is detected individually. Then, an index value indicating a translational diffusional characteristic of one light-emitting particle in a plane perpendicular to the moving direction of the light detection region is determined based upon intensity values of signals of light of the same light-emitting particle for identifying a light-emitting particle.
Abstract:
There is provided optical analysis techniques in the scanning molecule counting method using the light measurement with a confocal or multiphoton microscope in which the measuring unit time in the light measurement is set to an appropriate value in order to surely detect an approximately bell shape profile of the signal of a light-emitting particle and avoid excessive increase data volume of time series light intensity data. The inventive optical analysis technique of detecting light of a light-emitting particle in a sample solution generates time series light intensity data of light from a light detection region detected during moving the position of the light detection region of a microscope in the sample solution and detects in the data a signal indicating light from each light-emitting particle individually. The measuring unit time is determined based on the size and the moving speed of the light detection region.
Abstract:
In the scanning molecule counting method detecting light of a light-emitting particle in a sample solution using a confocal or multiphoton microscope, there is provided an optical analysis technique enabling the scanning in a sample solution with moving a light detection region in a broader area or along a longer route while making the possibility of detecting the same light-emitting particle as different particles as low as possible and remaining the size or shape of the light detection region unchanged as far as possible. In the inventive optical analysis technique, there are performed detecting light from the light detection region and generating time series light intensity data during moving the light detection region along the second route whose position is moved along the first route, and thereby, the signal indicating light from each light-emitting particle in a predetermined route is individually detected using the time series light intensity data.
Abstract:
There is provided a method of measuring a diffusion characteristic value (for example, a diffusion constant) of a light-emitting particle using the scanning molecule counting method using the optical measurement with a confocal microscope or a multiphoton microscope. The inventive method of measuring a diffusion characteristic value of a light-emitting particle is characterized to measure light intensity from the light detection region with moving the position of the light detection region in the sample solution by changing an optical path of the optical system to generate light intensity data and to compute a diffusion characteristic value of the light-emitting particle based on a deviation time from a moving cycle time of the light detection region in an interval of generation times of two or more signals corresponding to a same light-emitting particle on the light intensity data.