Abstract:
The present invention relates to a door frame assembly (22) for an elevator assembly which comprises a head jamb member (24), a sill member (26), a plurality of side members (28) which extend between the head jamb member (24) and the sill member (26), and at least one adjuster (30) which is operative to selectively adjust a position of the sill member (26) relative to a landing surface (18). A method of mounting a door frame assembly (22) that includes securing a portion of the door frame assembly (22) to a landing surface (18) and subsequently adjusting a position of the sill member (26) relative to the landing surface (18) all from the landing surface side of an opening to a hoistway is disclosed.
Abstract:
An elevator car and counterweight system is provided with a variable drag element. The variable drag element is controlled such that the lower of the counterweight and the car has a higher drag against further movement. In an embodiment which is particularly useful in a 2:1 roping system, the sheaves (54, 58) associated with the counterweight (56) and the car (60) receive a braking/drive motor (62, 64) to provide the variable drag. While the present invention provides the variable drag to compensate for vertical differences between the counterweight and car, the invention can also be utilized to hold the car at a particular floor. Further, this invention can be utilized to address a counterweight or car jump situation. Another disclosed drag element may be a magnetizable member (40, 33) guided along a guide rail (34, 36) for each of the car (32) and the counterweight (38). A control controls the magnetic force associated with the guide elements to hold the car or prevent counterweight jump.
Abstract:
A feedback system (24) for a motor (20) of an elevator system (10) is provided. The feedback system may include a first sensor (26) and a processing circuit (28). The first sensor (26) may be disposed in proximity to a drive component (16, 18, 32) of the elevator system (10) and configured to detect a change in position of the drive component (16, 18, 32). The processing circuit (28) may be configured to receive a first data signal from the first sensor (26) corresponding to the change in position of the drive component (16, 18, 32) and generate a feedback signal for controlling the motor (20) based on the first data signal.
Abstract:
An exemplary device for use in an elevator system includes at least one friction member that is selectively moveable into a damping position in which the friction member is useful to damp movement of an elevator car associated with the device. A solenoid actuator has an armature that is situated for vertical movement. The armature moves upward when the solenoid is energized to move the friction member into the damping position. The armature mass urges the armature in a downward vertical direction causing the friction member to move out of the damping position when the solenoid is not energized.
Abstract:
An exemplary elevator system comprises a machine support (30) including a first portion (32) situated in a generally horizontal position at least partially within a hoistway (24). A second portion (34) is oriented generally perpendicular to the first portion. The second portion has one end supported by a support surface (52) adjacent the hoistway such that a portion of a load of the machine support is transferred to the support surface. One end of the first portion (32) is supported by the second portion (34) and another end of the first portion is supported by a structural member at least partially in the hoistway such that a remainder of the load of the machine support is transferred to the structural member.
Abstract:
A pair of elevator cars (10, 11) traveling in the same hoistway have their positions sensed (20-23, 29-32) to provide for each a position signal (35, 37) from which velocity signals (64, 65) are derived; lookup tables (66, 61) of safe stopping distance (B, S) for braking and safeties are formed as a function of all possible combinations of velocity (V(U), V(L)) of said cars. Comparison of safe stopping distances for contemporaneous velocities of said cars with actual distance between said cars provides signals (85, 98, 99) to drop the brakes (49, 50) of one or more of the cars, and provides signals (82) to engage the safeties (18, 18a, 19, 19a) of all cars if the cars become closer or if acceleration detectors (117, 118) determine a car to be in freefall.
Abstract:
An elevator door moving arrangement includes a door mover (40) and an interlock device (42) supported near a lower edge (44) of cabin doors (26). The strategic position of the door mover (40) and the interlock device (42) minimizes the distance between the sill member (34, 78) and the operative components for moving the doors. In one example, the entire door mover assembly and the interlock are located beneath a sill member (34), which is beneath the bottom edge of the doors (26).
Abstract:
An exemplary brake device includes a brake element configured to apply a braking force to resist rotation of an associated component. A mounting member is configured to mount the brake device to a stationary surface. The mounting member is at least partially moveable relative to the stationary surface responsive to a torque on the brake device. A sensor provides an indication of a force associated with any movement of the mounting member relative to the stationary surface responsive to the torque.
Abstract:
An elevator system includes an electronic system capable of triggering a machine room brake and an electromagnetic safety trigger with low hysteresis and with minimal power requirements that can be released to engage safeties, when car over-speed and/or over-acceleration is detected. The electromagnetic trigger may be reset automatically and may be released to engage the safeties, during the reset procedure. The system includes a processing system that is configured to decrease response time and to reduce the occurrence of false triggers caused by conditions unrelated to passenger safety, such as passengers jumping inside the elevator car.