Abstract:
The invention describes a computer tomography method, in which a provided marker is reconstructed in order to determine the image resolution during the image reconstruction. The invention furthermore discloses a computer tomograph comprising a patient table for supporting a patient in order to expose said patient to X-ray radiation, wherein at least one marker for determining the image resolution during the image reconstruction is arranged on the patient table.
Abstract:
The invention relates to a computer tomography method in which a radiation source moves relative to an examination region along, in particular, a helical or circular trajectory. Measured values are acquired by a detector unit and a CT image of the examination region is reconstructed from these measured values. In the reconstruction, a complementary measured value, whose ray is oriented parallel to the ray of the respective measured value that has been acquired but in the opposite direction thereto, is determined for each of at least some measured values that lie within a reconstruction window. Redundant measured values are used to calculate the complementary measured values, with the help in particular of John's equation. The measured values for which complementary measured values have been determined are each replaced by a sum comprised a measured value that has been weighted and a complementary measured value that has been weighted, and a CT image is reconstructed, in particular by an exact method of reconstruction, from the replacement measured values, and where appropriate from acquired measured values, that lie within the reconstruction window.
Abstract:
The invention relates to a computerized tomography method, in which an examination area is scanned radiographically along a helical trajectory by a conical beam. The radiation transmitted through the examination area is measured by means of a detector unit, wherein the absorption distribution in the examination area is reconstructed exactly or at least quasi-exactly from these measured values. Reconstruction uses redundant measured values and comprises derivation of the measured values from parallel rays of different projections, integration of these values along kappa -lines, weighting of these values and back-projection.
Abstract:
The invention relates to a computed tomography method for forming images of an object to be examined which is arranged in an examination zone. The examination zone is scanned by means of a conical X-ray beam. In order to enable images having a high image quality to be formed from a selected imaging zone while making an as small as possible computational effort, the invention proposes the following steps: a) selecting an imaging zone of the object to be examined, b) determining the sub-regions of the X-ray detector on which the imaging zone of the object to be examined is projected during the acquisition of the projection data, c) forming sub-projection data by selecting the projection data associated with the sub-regions from the acquired projection data, and d) reconstructing the desired image from the sub-projection data by backprojection.
Abstract:
The invention relates to a method and a device for the iterative reconstruction of cross-sectional images of the heart (7) of a patient based on projections (P1, . . . P5) from different directions which are for example generated with a helical cone-beam CT scanner. A cardiac weight function (f) quantifies how near the projections (P1, . . . ) are to a given observation phase (To) of the heart cycle based on simultaneously recorded electrocardiographic signals (ECG). The whole set of projections (P1, . . . ) is divided into subsets (S1, . . . ) which each contain only projections corresponding to a similar cardiac weight (f), and an iterative reconstruction algorithm like ART uses in one update or iteration step all projections of such a subset (S1, . . . ) simultaneously.
Abstract:
The invention relates to a computed tomography method in which an examination zone is irradiated from two mutually offset, preferably circular trajectories. In an intermediate region the absorption distribution is reconstructed by means of measuring values from both trajectories, the weight with which the measuring values are used being larger as the distance between the voxel to be reconstructed and the relevant trajectory is smaller.
Abstract:
The apparatus includes an x-ray source (2) and an x-ray detector (3) for continuously detecting x-ray images of a patient from a non-varying position of the x-ray source and detector. Indicator devices (10) illuminate and/or monitor the region above the patient irradiated by the x-rays (62). The indicator devices may be arranged on the x-ray detector and/or on the x-ray source. The devices may include multiple laser diodes, light guides or a UV emitter.
Abstract:
A computer tomography procedure generates (S) a conical beam (4) covering the investigation region (13) and moves (14) the source in a helical (17) path with detection (16) and image (11) reconstruction (10) using beam angle cosine weighted integration. Includes Independent claims for a computer tomograph and computer programs using the procedure.
Abstract:
The invention relates to an imaging system for imaging an object. Projection data of the object are acquired by using a radiation source emitting primary radiation (14) from a primary focal spot (15) and unwanted secondary radiation (16) from secondary focal spots (17). A first image of the object is reconstructed from the acquired projection data, a forward projection of the secondary radiation through the first image is simulated for generating secondary projection data, and a second image is generated based on the acquired projection data and the secondary projection data. Since the secondary projection data, which can generally cause image artifacts, are determined, the reconstruction unit can consider these unwanted secondary projection data while reconstructing the second image, in order to reduce the influence of the secondary projection data on the reconstructed second image, thereby improving the image quality.