Abstract:
In accordance with aspects of the disclosure, a method, apparatus, and computer program product are provided for wireless communication. The method, apparatus, and computer program product may be configured to determine that a device is switching from a first cell and a first location to a second cell and a second location to implement a mobile terminated circuit switched fallback process, generate a routing area update message including a flag indicating a pending data packet for communication, and transmit the generated routing area update message.
Abstract:
An access terminal pre-registers with a second access network via a first access network to ensure a quick handover in the future. Frequent pre-registration attempts are avoided by implementing a hysteresis timer that restricts when a pre-registration process can be initiated. The hysteresis timer is started when pre-registration is initiated by the access terminal. No new pre-registration attempts are permitted if the hysteresis timer has not expired. An abort condition can cause the hysteresis timer to be aborted early, and a new pre-registration can be initiated. Access points in the first access network may be grouped into one or more pre-registration zones. If the access terminal moves from a first access point to a second access point, a new pre-registration is skipped if the first and second access points have the same pre-registration zone or the second access point is aware of the pre-registration zone for the first access point.
Abstract:
Methods, systems, and devices are described for reducing congestion in a wireless communications system. A second connection failure is detected, and a difference between a timestamp of the second connection failure and a timestamp of a first connection failure is calculated. Upon determining that the difference satisfies a first time threshold, information relating to one or more previous connection failures is cleared. A time period is identified. A number of connection failures from a cell that occur during the time period is identified. A determination is made as to whether the number of connection failures satisfies a threshold. Upon determining that the number of connection failures satisfies the threshold, a future connection request may be withheld for a time period.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for transmission restriction. An exemplary method generally includes initiating a mobile originating (MO) call, determining availability of parameters for a first access gating mechanism for determining whether to bar or allow transmission of the MO call, selecting the first access gating mechanism or a second access gating mechanism, based on the determination of the availability of the parameters, and applying the selected gating mechanism to determine whether to bar or allow the MO call.
Abstract:
A CS fallback procedure handles conflict that may arise when handover operations occur during CS fallback. If CS fallback is initiated for an access terminal and handover of that access terminal is then initiated before the CS fallback completes, the target for the handover is informed of the CS fallback so that the target may perform the appropriate CS fallback operations.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus, e.g., a network entity, may establish a connection between a user equipment (UE) and a packet data network, designate the packet data network with an always-on status, and notify the UE, while the UE is in the idle mode, when a loss of connection with the packet data network is detected. The UE may be connected to another packet data network when the loss of the connection occurs. A service provided by the packet data network may be designated as having an always-on status and the UE may be notified when a loss of the service is detected.
Abstract:
A CS fallback procedure handles conflict that may arise when handover operations occur during CS fallback. If CS fallback is initiated for an access terminal and handover of that access terminal is then initiated before the CS fallback completes, the target for the handover is informed of the CS fallback so that the target may perform the appropriate CS fallback operations.
Abstract:
Methods, systems, and devices are described for reducing congestion in a wireless communications system. A second connection failure is detected, and a difference between a timestamp of the second connection failure and a timestamp of a first connection failure is calculated. Upon determining that the difference satisfies a first time threshold, information relating to one or more previous connection failures is cleared. A time period is identified. A number of connection failures from a cell that occur during the time period is identified. A determination is made as to whether the number of connection failures satisfies a threshold. Upon determining that the number of connection failures satisfies the threshold, a future connection request may be withheld for a time period.
Abstract:
Aspects of the present disclosure propose systems and methods for managing assignment of short message service (SMS) message identifications (IDs) in a multimode device (e.g., mobile station). The proposed methods ensure that a unique message ID is assigned to each SMS transmitted by the mobile station (MS). Each retransmission of the SMS messages may be assigned a message ID similar to or the same as the previous transmission(s) of the SMS message. As a result, a network messaging center may be able to identify duplicate SMS messages that are marked with unique message IDs even if they are transmitted on different air interfaces and/or by different modems (modulators/demodulators).
Abstract:
Radio access interworking technologies allow a target network to notify a source network that a mobile device has moved from source network to target network, wherein mobile device does not need to perform notification to source network. Further, source network can provide a first subset of overhead information to mobile device and, after moving to target network, mobile device can receive a second subset of overhead information from target network. Further, mobile device can perform prehashing prior to moving to target network based on a channel list received from source network.