Abstract:
A method of encoding video data comprising encoding a current picture of video data, generating a respective collocated reference picture index syntax element for one or more slices of the current picture, and performing a bitstream conformance check only for slices of the one or more slices that do not have an intra slice type and for which a temporal motion vector predictor is enabled, the bitstream conformance check constraining the values of the respective collocated reference picture index syntax elements such that each respective collocated reference picture index syntax element points to the same picture and does not reference the current picture itself.
Abstract:
A device for decoding video data adds motion information of a neighboring block of a current block to a merge candidate list, wherein the motion information comprises a motion vector of the neighboring block, and wherein the motion vector refers to the current picture; receives an index indicating a merge candidate from the merge candidate list; and in response to the index indicating the merge candidate corresponding to the motion information of the neighboring block, predicts the current block using a lower precision motion vector that represents a rounded version of the motion vector of the neighboring block.
Abstract:
An apparatus configured to decode video data that comprises a memory configured to store the video data; and one or more processors. The one or more processors are configured to: receive a bitstream that is constrained such that escape values used in a palette mode for decoding the video data are no greater than a maximum value, wherein the bitstream includes information for determining at least one escape value representing a sample in a block of the video data to be decoded; and reconstruct the sample in the block of the video data using the information for determining the at least one escape value.
Abstract:
An example method of encoding video data includes determining a resolution that will be used for a motion vector that identifies a predictor block in a current picture of video data for a current block in the current picture of video data; determining, based on the determined resolution, a search region for the current block such that a size of the search region is smaller where the resolution is fractional-pixel than where the resolution is integer-pixel; selecting, from within the search region, a predictor block for the current block; determining the motion vector that identifies the selected predictor block for the current block; and encoding, in a coded video bitstream, a representation of the motion vector.
Abstract:
Techniques are described where a current pixel that cannot be palette mode coded in copy above mode and is not coded in a copy index mode is palette mode coded based on a palette index of a diagonal pixel.
Abstract:
In an example, a method of processing video data includes determining an input parameter for a truncated binary code that represents a palette index for a pixel of a block of video data based on a number of indices in a palette for the block. The method also includes coding a prefix of the truncated binary code, and determining a palette coding mode for the pixel from a first palette coding mode and a second palette coding mode based only on the prefix of the truncated binary code.
Abstract:
In an example, a method of processing video data includes coding at least one of data that indicates a maximum palette size of a palette of color values for coding a block of video data or data that indicates a maximum palette predictor size of a palette predictor for determining the palette of color values. The method also includes coding the block of video data in accordance with the data.
Abstract:
An apparatus for coding video information may include computing hardware configured to: when a current picture is to be predicted using at least inter layer motion prediction (ILMP): process a collocated reference index value associated with the current picture, wherein the collocated reference index value indicates a first reference picture that is used in predicting the current picture using inter layer prediction (ILP); and determine whether the first reference picture indicated by the collocated reference index value is enabled for ILMP; when the current picture is to be predicted using at least inter layer sample prediction (ILSP): process a reference index value associated with a block in the current picture, wherein the reference index value indicates a second reference picture that is used in predicting the block in the current picture using ILP; and determine whether the second reference picture indicated by the reference index value is enabled for ILSP.
Abstract:
An apparatus for coding video information according to certain aspects includes a memory and a processor. The memory unit is configured to store video information associated with an interlayer reference picture for a current picture to be coded. The processor is configured to: receive information relating to a plurality of interlayer reference offsets that are configured to define a region of a resampled version of the interlayer reference picture, wherein the region is used to generate a prediction of the current picture, and wherein the plurality of interlayer reference offsets include a left offset, a top offset, a right offset, and a bottom offset that are each specified relative to the current picture; determine based at least in part on the plurality of interlayer reference offsets whether to resample the interlayer reference picture; and in response to determining to resample the interlayer reference picture, resample the interlayer reference picture.
Abstract:
An apparatus configured to code (e.g., encode or decode) video information includes a memory unit and a processor in communication with the memory unit. The memory unit is configured to store video information associated with a base layer and an enhancement layer, the enhancement layer comprising an enhancement layer (EL) block and the base layer comprising a base layer (BL) block that is co-located with the enhancement layer block. The processor is configured to determine predicted pixel information of the EL block by applying a prediction function to pixel information of the BL block, and to determine the EL block using the predicted pixel information. The processor may encode or decode the video information.