Abstract:
An ultra-wide band frequency modulator is disclosed. The frequency modulator includes a direct modulation phase lock loop that receives a small component. The frequency modulator also includes a delay module that produces a plurality of delay lines. The frequency modulator further includes an edge selector that receives a large component and the plurality of delay lines.
Abstract:
A method an apparatus for synchronizing phases of one or more divider units comprise powering on a master divider unit to provide a reference signal. A phase of a slave divider unit is synchronized to the reference signal from the master divider unit by providing a power on pulse at the slave divider unit, synchronizing the phase of the slave divider unit to the reference signal using a digitally controlled oscillator, and powering on the slave divider unit after a first predetermined delay period following a rising edge of the power on pulse. By synchronizing a slave divider unit to the reference signal from the master divider unit, any number of slave divider units may be powered on and in-phase with each other.
Abstract:
A method for controlling the voltage of signals used to control power amplifiers is described. A first multiplexer and a second multiplexer are set to an enabling signal. The first multiplexer is on a first integrated circuit and the second multiplexer is on a second integrated circuit. A command is written to the first multiplexer to set the first multiplexer to one of a plurality of control signals used to control a power amplifier. A command is written to the second multiplexer to select one of the plurality of control signals that maps to the first multiplexer. The second integrated circuit is connected to a power supply.
Abstract:
Techniques are provided for dynamically biasing an amplifier to extend the amplifier's operating range while conserving power. In an embodiment, a detector (310) is provided to measure the amplifier output to determine an operating region of the amplifier. The output of the detector (310) may be input to a bias adjuster (320), which outputs a dynamic voltage level supplied to at least one bias transistor (M81) in the amplifier. Multiple embodiments of the detector and bias adjuster are disclosed.
Abstract:
A circuit receives a first signal (for example, a baseband signal) and mixes it with a local oscillator (LO) signal, and outputs a second signal (for example, an RFOUT signal). The circuit includes multiple identical Mixer and Frequency Divider Pair (MFDP) circuits. Each MFDP can be enabled separately. Each MFDP includes a mixer and a frequency divider that provides the mixer with a local version of the LO signal. The MFDP outputs are coupled together so that the output power of the second signal (RFOUT) is the combined output powers of the various MFDPs. By controlling the number of enabled MFDPs, the output power of the second signal is controlled. Because the MFDPs all have identical layouts, accuracy of output power step size is improved. Because LO signal power within the circuit automatically changes in proportion to the number of enabled MFDPs, local oscillator leakage problems are avoided.
Abstract:
Techniques for calibrating digitally controlled oscillators (DCOs) are disclosed. In an aspect of the disclosure, an initial set of control codes for operating the DCO is determined. A range of output frequencies produced from the initial set is identified. Gaps or instances of overlap are identified in the frequency range. For the overlap case, control codes are removed from the initial set that correspond to the overlap instance to establish a revised set. For the gap case, control codes are added to the initial set for producing frequencies values that fill the gap. An apparatus for performing the same is also disclosed.
Abstract:
A time-to-digital converter (TDC) can have a resolution that is finer than the propagation delay of an inverter. In one example, a fractional-delay element circuit receives a TDC input signal and generates therefrom a second signal that is a time-shifted facsimile of a first signal. The first signal is supplied to a first delay line timestamp circuit (DLTC) and the second signal is supplied to a second DLTC. The first DLTC generates a first timestamp indicative of a time between an edge of a reference input signal to the TDC and an edge of the first signal. The second DLTC generates a second timestamp indicative of a time between the edge of the reference input signal and an edge of the second signal. The first and second timestamps are combined and together constitute a high-resolution overall TDC timestamp that has a finer resolution than either the first or second timestamps.
Abstract:
Techniques for enabling a time-to-digital converter (TDC) to sample with sub-inverter delay resolution are disclosed. In an embodiment, the inputs to a differential D-Q flip-flop in the TDC are coupled to a single-ended signal and a delayed and inverted version of that signal to allow time interpolation of the signal. Further disclosed are techniques to balance the loads of a first delay line and a complementary delay line within the TDC.
Abstract:
A local oscillator includes a phase-locked loop. The phase-locked loop includes voltage controlled oscillator (VCO) and a novel VCO control circuit. The VCO control circuit may be programmable and configurable. In one example, an instruction is received onto the VCO control circuit to change the power state of the VCO. The instruction is issued by other circuitry in response to a detected change in RF channel conditions (for example, a change in a signal-to-noise determination) in a cellular telephone. In response, the VCO control circuit outputs control signals that gradually widen the loop bandwidth of the PLL, then gradually change the VCO bias current to change the VCO power state, and then narrow the loop bandwidth of the PLL back to its original bandwidth. The entire process of widening the PLL bandwidth, changing the VCO power state, and narrowing the PLL bandwidth occurs while the PLL remains locked.
Abstract:
A digital-to-analog converter, RF transmit channel and method, for converting a digital signal of N bits having a set M of most significant bits and a set L of least significant bits to an analog signal, are disclosed. The digital signal defines a set of coded values which are converted to analog values and modulated on to a RF signal. The digital-to-analog converter includes a plurality of switches and an output stage, for providing at least a first differential output signal and a second differential output signal. The output stage modifies currents received from the plurality of switches, such that the value of the average output current of the first and second differential outputs signals is steered to a relatively low current value at the mid-point of the coded values.