Abstract:
The disclosure is directed to techniques for picture-in-picture (PIP) processing for video telephony (VT). According to the disclosed techniques, a local video communication device transmits PIP information to a remote video communication device. Using the PIP information, the remote video communication device applies preferential encoding to non-PIP regions of video transmitted to the local video communication device.
Abstract:
Methods and systems for processing video data are described. A set of candidate motion vectors is selected from motion vectors associated with macroblocks in a first frame of video data and from motion vectors associated with macroblocks in a second frame of the video data. A statistical measure of the set is determined. The statistical measure defines a motion vector for a macroblock of interest in the second frame.
Abstract:
In general, aspects of this disclosure describe example techniques for efficient usage of the fixed data rate processing of a graphics processing unit (GPU) for a variable data rate processing. For example, the GPU may be coupled to a pixel value processing unit that receives pixel values for pixels in an image processed by the GPU. The pixel value processing unit may determine whether the pixel values are for pixels that require further processing, and store the pixel values for the pixels that are required for further processing in a buffer.
Abstract:
This disclosure describes techniques for region-of-interest (ROI) encoding. In accordance with the techniques described herein, an encoding device may determine a temporal spatial dependency value for a candidate reference video block for inter-coding a current block in a video frame. The encoding device may compare the temporal spatial dependency value to a threshold value and select a coding mode for the current block based on the comparison. A decoding device may receive data defining a ROI as well as the temporal spatial dependency value and decode a video block in the ROI based at least in part on the temporal spatial dependency value. In this manner, the techniques of this disclosure may allow a video content viewer the ability to choose a ROI to watch.
Abstract:
Methods and systems for processing video data are described. A set of candidate motion vectors is selected from motion vectors associated with macroblocks in a first frame of video data and from motion vectors associated with macroblocks in a second frame of the video data. A statistical measure of the set is determined. The statistical measure defines a motion vector for a macroblock of interest in the second frame.
Abstract:
The disclosure is directed to techniques for region-of-interest (ROI) processing for video telephony (VT) applications. According to the disclosed techniques, a recipient device defines ROI information for video information transmitted by a sender device, i.e., far-end video information. The recipient device transmits the ROI information to the sender device. Using the ROI information transmitted by the recipient device, the sender device applies preferential encoding to an ROI within a video scene. In this manner, the recipient device is able to remotely control ROI encoding of far-end video information by the sender device.
Abstract:
A method and apparatus for implementing a vocoder in an application specific integrated circuit (ASIC) is disclosed. The apparatus contains a DSP core (4) that performs computations in accordance with a reduced instruction set (RISC) architecture. The circuit further comprises a specifically designed slave processor to the DSP core (4) referred to as the minimization processor (6). The feature of the invention is a specifically designed block normalization circuitry.