Abstract:
A method for selectively metallizing a surface of a ceramic substrate, a ceramic product and use of the ceramic product are provided. The method comprises steps of: A) molding and sintering a ceramic composition to obtain the ceramic substrate, in which the ceramic composition comprises a ceramic powder and a functional powder dispersed in the ceramic powder; the ceramic powder is at least one selected from a group consisting of an oxide of E, a nitride of E, a oxynitride of E, and a carbide of E; E is at least one selected from a group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, B, Al, Ga, Si, Ge, P, As, Sc, Y, Zr, Hf, and lanthanide elements; the functional powder is at least one selected from a group consisting of an oxide of M, a nitride of M, a oxynitride of M, a carbide of M, and a simple substance of M; and M is at least one selected from a group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, Ta, W, Re, Os, Ir, Pt, Au, In, Sn, Sb, Pb, Bi, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu; B) radiating a predetermined region of the surface of the ceramic substrate using an energy beam to form a chemical plating active center on the predetermined region of the surface of the ceramic substrate; and C) performing chemical plating on the ceramic substrate formed with the chemical plating active center to form a metal layer on the predetermined region of the surface of the ceramic substrate.
Abstract:
A thermoelectric module including at least two heat exchanging units connected in series is provided. Each heating exchanging unit includes: a main body having an inlet for intaking cooling medium; a thermoelectric element provided in the main body which divides the main body into a working chamber formed with a working medium outlet and a waste heat chamber formed with a waste medium outlet. The working medium outlet of one of two neighboring heat exchanging units is connected with the inlet of the remaining of the two neighboring heat exchanging units. A temperature controlled vehicle seat comprising the thermoelectric module is also provided.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin is a mixture of a main resin and a polyolefin resin, the main resin is a mixture of polyphenylene oxide and a polyamide, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A metal-resin composite and method for producing the same are provided. The method comprises steps of: A) forming nanopores in at least a part of the surface of a shaped metal; and B) injection molding a thermoplastic resin directly on the surface of the shaped metal, wherein the 5 thermoplastic resin includes a main resin and a polyolefin resin, the main resin includes a mixture of polyphenylene ether and polyphenylene sulfide, and the polyolefin resin has a melting point of about 65§ to about 105§.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin is a mixture of a main resin and a polyolefin resin, the main resin is a mixture of polyphenylene oxide and a polyamide, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A sealing assembly, a method of preparing the sealing assembly and a battery are provided. The sealing assembly comprises a metal ring (1) having a mounting hole therein; a ceramic ring (2) having a connecting hole therein and disposed in the mounting hole; and a core column (3) disposed in the connecting hole, wherein at least one of an inner circumferential wall surface of the metal ring, an outer circumferential wall surface of the ceramic ring, an inner circumferential wall surface of the ceramic ring and an outer circumferential wall surface of the core column is configured as an inclined surface, and an inclination angle of the inclined surface relative to a vertical plane is about 1 degree to about 45 degrees.
Abstract:
A method for integrally molding a metal and a resin and a metal-resin composite structure obtainable by the same are provided. The method comprises forming a nanopore in a surface of a metal sheet; melting a thermoplastic resin on the surface of the metal sheet formed with the nanopore; and injection molding the thermoplastic resin onto the surface of the metal sheet. The thermoplastic resin includes a mixture of a main resin and a polyolefin resin, the main resin is a polycarbonate, and the polyolefin resin has a melting point of about 65° C. to about 105° C.
Abstract:
A license plate device comprises: a first shell (110) having a transparent region (111) forming a first predetermined logo pattern and a non transparent region (112); a second shell (150) fixedly connected with the first shell (110), with a sealed accommodating space; a light guide plate (120) disposed between the bottom plate (130) and the first shell (110) which is formed with an accommodating groove (122); and a circuit board (140) disposed between the light guide plate (120) and the second shell (150) which is formed with an illuminating element (141) on a surface thereof facing toward the light guide plate (120) to be accommodated in the accommodating groove (122), in which the light guide plate (120) is formed with a plurality of microprism structures (121) configured to transmit at least a part of light emitted by the illuminating element (141) penetrating through the light guide plate (120) from a face of the light guide plate (120) facing the first shell (110).